000891725 001__ 891725
000891725 005__ 20230111074315.0
000891725 0247_ $$2doi$$a10.1063/5.0015157
000891725 0247_ $$2ISSN$$a0021-8979
000891725 0247_ $$2ISSN$$a1089-7550
000891725 0247_ $$2ISSN$$a1520-8850
000891725 0247_ $$2Handle$$a2128/27616
000891725 0247_ $$2WOS$$aWOS:000582077700003
000891725 037__ $$aFZJ-2021-01698
000891725 041__ $$aEnglish
000891725 082__ $$a530
000891725 1001_ $$00000-0003-2868-3416$$aDing, B.$$b0$$eCorresponding author
000891725 245__ $$aAlloy segregation at stacking faults in zincblende GaN heterostructures
000891725 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2020
000891725 3367_ $$2DRIVER$$aarticle
000891725 3367_ $$2DataCite$$aOutput Types/Journal article
000891725 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618408169_30669
000891725 3367_ $$2BibTeX$$aARTICLE
000891725 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891725 3367_ $$00$$2EndNote$$aJournal Article
000891725 520__ $$aCurrent cubic zincblende III-Nitride epilayers grown on 3C-SiC/Si(001) substrates by metal-organic vapor-phase epitaxy contain a high density of stacking faults lying on the {111} planes. A combination of high-resolution scanning transmission electron microscopy and energy dispersive x-ray spectrometry is used to investigate the effects of alloy segregation around stacking faults in a zincblende III-nitride light-emitting structure, incorporating InGaN quantum wells and an AlGaN electron blocking layer. It is found that in the vicinity of the stacking faults, the indium and aluminum contents were a factor of 2.3 ± 1.3 and 1.9 ± 0.5 higher, respectively, than that in the surrounding material. Indium and aluminum are also observed to segregate differently in relation to stacking faults with indium segregating adjacent to the stacking fault while aluminum segregates directly on the stacking fault
000891725 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000891725 588__ $$aDataset connected to CrossRef
000891725 7001_ $$0P:(DE-HGF)0$$aFrentrup, M.$$b1
000891725 7001_ $$00000-0003-3781-8212$$aFairclough, S. M.$$b2
000891725 7001_ $$0P:(DE-HGF)0$$aKappers, M. J.$$b3
000891725 7001_ $$0P:(DE-Juel1)188119$$aJain, M.$$b4
000891725 7001_ $$0P:(DE-Juel1)144926$$aKovács, A.$$b5
000891725 7001_ $$0P:(DE-HGF)0$$aWallis, D. J.$$b6
000891725 7001_ $$00000-0003-0029-3993$$aOliver, R. A.$$b7
000891725 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/5.0015157$$gVol. 128, no. 14, p. 145703 -$$n14$$p145703 -$$tJournal of applied physics$$v128$$x1089-7550$$y2020
000891725 8564_ $$uhttps://juser.fz-juelich.de/record/891725/files/5.0015157.pdf$$yOpenAccess
000891725 909CO $$ooai:juser.fz-juelich.de:891725$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891725 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188119$$aForschungszentrum Jülich$$b4$$kFZJ
000891725 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b5$$kFZJ
000891725 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000891725 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000891725 9141_ $$y2021
000891725 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-29
000891725 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891725 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891725 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2019$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-29$$wger
000891725 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-29
000891725 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000891725 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000891725 920__ $$lyes
000891725 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000891725 980__ $$ajournal
000891725 980__ $$aVDB
000891725 980__ $$aUNRESTRICTED
000891725 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891725 9801_ $$aFullTexts