| Home > Publications database > Alloy segregation at stacking faults in zincblende GaN heterostructures > print |
| 001 | 891725 | ||
| 005 | 20230111074315.0 | ||
| 024 | 7 | _ | |a 10.1063/5.0015157 |2 doi |
| 024 | 7 | _ | |a 0021-8979 |2 ISSN |
| 024 | 7 | _ | |a 1089-7550 |2 ISSN |
| 024 | 7 | _ | |a 1520-8850 |2 ISSN |
| 024 | 7 | _ | |a 2128/27616 |2 Handle |
| 024 | 7 | _ | |a WOS:000582077700003 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-01698 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Ding, B. |0 0000-0003-2868-3416 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Alloy segregation at stacking faults in zincblende GaN heterostructures |
| 260 | _ | _ | |a Melville, NY |c 2020 |b American Inst. of Physics |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1618408169_30669 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Current cubic zincblende III-Nitride epilayers grown on 3C-SiC/Si(001) substrates by metal-organic vapor-phase epitaxy contain a high density of stacking faults lying on the {111} planes. A combination of high-resolution scanning transmission electron microscopy and energy dispersive x-ray spectrometry is used to investigate the effects of alloy segregation around stacking faults in a zincblende III-nitride light-emitting structure, incorporating InGaN quantum wells and an AlGaN electron blocking layer. It is found that in the vicinity of the stacking faults, the indium and aluminum contents were a factor of 2.3 ± 1.3 and 1.9 ± 0.5 higher, respectively, than that in the surrounding material. Indium and aluminum are also observed to segregate differently in relation to stacking faults with indium segregating adjacent to the stacking fault while aluminum segregates directly on the stacking fault |
| 536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Frentrup, M. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Fairclough, S. M. |0 0000-0003-3781-8212 |b 2 |
| 700 | 1 | _ | |a Kappers, M. J. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Jain, M. |0 P:(DE-Juel1)188119 |b 4 |
| 700 | 1 | _ | |a Kovács, A. |0 P:(DE-Juel1)144926 |b 5 |
| 700 | 1 | _ | |a Wallis, D. J. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Oliver, R. A. |0 0000-0003-0029-3993 |b 7 |
| 773 | _ | _ | |a 10.1063/5.0015157 |g Vol. 128, no. 14, p. 145703 - |0 PERI:(DE-600)1476463-5 |n 14 |p 145703 - |t Journal of applied physics |v 128 |y 2020 |x 1089-7550 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/891725/files/5.0015157.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:891725 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)188119 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144926 |
| 913 | 0 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-01-29 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-29 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-29 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-29 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J APPL PHYS : 2019 |d 2021-01-29 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-01-29 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-01-29 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-29 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|