000891746 001__ 891746
000891746 005__ 20250701125858.0
000891746 0247_ $$2doi$$a10.1016/j.ceramint.2020.09.250
000891746 0247_ $$2ISSN$$a0272-8842
000891746 0247_ $$2ISSN$$a0392-2960
000891746 0247_ $$2Handle$$a2128/27596
000891746 0247_ $$2WOS$$aWOS:000602999400002
000891746 037__ $$aFZJ-2021-01706
000891746 082__ $$a670
000891746 1001_ $$0P:(DE-Juel1)171261$$aFakouri Hasanabadi, M.$$b0$$eCorresponding author
000891746 245__ $$aMicro-scale evolution of mechanical properties of glass-ceramic sealant for solid oxide fuel/electrolysis cells
000891746 260__ $$aFaenza$$bCeramurgia73399$$c2021
000891746 3367_ $$2DRIVER$$aarticle
000891746 3367_ $$2DataCite$$aOutput Types/Journal article
000891746 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618301272_11325
000891746 3367_ $$2BibTeX$$aARTICLE
000891746 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891746 3367_ $$00$$2EndNote$$aJournal Article
000891746 520__ $$aThe structural integrity of the sealant is critical for the reliability of solid oxide cells (SOCs) stacks. In this study, elastic modulus (E), hardness (H) and fracture toughness (KIC) of a rapid crystallizing glass of BaO–CaO–SiO2 system termed “sealant G” are reported as determined using an indentation test method at room temperature. A wide range of indentation loads (1 mN–10 N) was used to investigate the load-dependency of these mechanical properties. Values of 95 ± 12 GPa, 5.8 ± 0.2 GPa and 1.15 ± 0.07 MPa m0.5 were derived for E, H and KIC using the most suitable indentation loads. An application relevant annealing treatment of 500 h at 800 °C does not lead to a significant change of the mechanical properties. Potential self-healing behavior of the sealant has also been studied by electron microscopy, based on heat treatment of samples with indentation-induced cracks for 70 h at 850 °C. Although the sealant G is considered to be fully crystallized, evidence indicates that its cracks can be healed even in the absence of a dead load.
000891746 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000891746 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x1
000891746 588__ $$aDataset connected to CrossRef
000891746 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, J.$$b1
000891746 7001_ $$0P:(DE-Juel1)133667$$aGroß-Barsnick, S. M.$$b2
000891746 7001_ $$0P:(DE-HGF)0$$aAbdoli, H.$$b3
000891746 7001_ $$0P:(DE-HGF)0$$aKokabi, A. H.$$b4
000891746 7001_ $$0P:(DE-HGF)0$$aFaghihi-Sani, M. A.$$b5
000891746 773__ $$0PERI:(DE-600)245887-1$$a10.1016/j.ceramint.2020.09.250$$gVol. 47, no. 3, p. 3884 - 3891$$n3$$p3884 - 3891$$tCeramics international / Ci news$$v47$$x0272-8842$$y2021
000891746 8564_ $$uhttps://juser.fz-juelich.de/record/891746/files/Micro-scale%20evolution%20-%20Malzbender.pdf$$yPublished on 2020-09-28. Available in OpenAccess from 2022-09-28.
000891746 909CO $$ooai:juser.fz-juelich.de:891746$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b1$$kFZJ
000891746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133667$$aForschungszentrum Jülich$$b2$$kFZJ
000891746 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000891746 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000891746 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
000891746 9141_ $$y2021
000891746 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000891746 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000891746 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000891746 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000891746 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891746 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCERAM INT : 2015
000891746 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000891746 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000891746 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000891746 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000891746 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000891746 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000891746 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000891746 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000891746 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000891746 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x1
000891746 9801_ $$aFullTexts
000891746 980__ $$ajournal
000891746 980__ $$aVDB
000891746 980__ $$aUNRESTRICTED
000891746 980__ $$aI:(DE-Juel1)IEK-2-20101013
000891746 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000891746 981__ $$aI:(DE-Juel1)ITE-20250108
000891746 981__ $$aI:(DE-Juel1)IMD-1-20101013