000891784 001__ 891784
000891784 005__ 20240712100848.0
000891784 0247_ $$2doi$$a10.1029/2020RG000702
000891784 0247_ $$2ISSN$$a0034-6853
000891784 0247_ $$2ISSN$$a0096-1043
000891784 0247_ $$2ISSN$$a1944-9208
000891784 0247_ $$2ISSN$$a8755-1209
000891784 0247_ $$2Handle$$a2128/27937
000891784 0247_ $$2altmetric$$aaltmetric:103365664
000891784 0247_ $$2WOS$$aWOS:000667476800006
000891784 037__ $$aFZJ-2021-01731
000891784 082__ $$a550
000891784 1001_ $$0P:(DE-Juel1)159462$$aTritscher, I.$$b0$$eCorresponding author
000891784 245__ $$aPolar Stratospheric Clouds: Satellite Observations, Processes, and Role in Ozone Depletion
000891784 260__ $$aHoboken, NJ$$bWiley$$c2021
000891784 3367_ $$2DRIVER$$aarticle
000891784 3367_ $$2DataCite$$aOutput Types/Journal article
000891784 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1624958517_29207
000891784 3367_ $$2BibTeX$$aARTICLE
000891784 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891784 3367_ $$00$$2EndNote$$aJournal Article
000891784 520__ $$aPolar stratospheric clouds (PSCs) play important roles in stratospheric ozone depletion during winter and spring at high latitudes (e.g., the Antarctic ozone hole). PSC particles provide sites for heterogeneous reactions that convert stable chlorine reservoir species to radicals that destroy ozone catalytically. PSCs also prolong ozone depletion by delaying chlorine deactivation through the removal of gas-phase HNO3 and H2O by sedimentation of large nitric acid trihydrate (NAT) and ice particles. Contemporary observations by the spaceborne instruments Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Microwave Limb Sounder (MLS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) have provided an unprecedented polar vortex-wide climatological view of PSC occurrence and composition in both hemispheres. These data have spurred advances in our understanding of PSC formation and related dynamical processes, especially the firm evidence of widespread heterogeneous nucleation of both NAT and ice PSC particles, perhaps on nuclei of meteoritic origin. Heterogeneous chlorine activation appears to be well understood. Reaction coefficients on/in liquid droplets have been measured accurately, and while uncertainties remain for reactions on solid NAT and ice particles, they are considered relatively unimportant since under most conditions chlorine activation occurs on/in liquid droplets. There have been notable advances in the ability of chemical transport and chemistry-climate models to reproduce PSC temporal/spatial distributions and composition observed from space. Continued spaceborne PSC observations will facilitate further improvements in the representation of PSC processes in global models and enable more accurate projections of the evolution of polar ozone and the global ozone layer as climate changes.
000891784 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000891784 536__ $$0G:(GEPRIS)310479827$$aDFG project 310479827 - Stratosphärische Wasserdampf Simulationen: Von den Polarregionen zur Tropischen Tropopause $$c310479827$$x1
000891784 588__ $$aDataset connected to CrossRef
000891784 7001_ $$00000-0001-8240-7223$$aPitts, M. C.$$b1$$eCorresponding author
000891784 7001_ $$0P:(DE-HGF)0$$aPoole, L. R.$$b2
000891784 7001_ $$00000-0001-6823-8857$$aAlexander, S. P.$$b3
000891784 7001_ $$0P:(DE-HGF)0$$aCairo, F.$$b4
000891784 7001_ $$00000-0002-6803-4149$$aChipperfield, M. P.$$b5
000891784 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b6
000891784 7001_ $$0P:(DE-HGF)0$$aHöpfner, M.$$b7
000891784 7001_ $$0P:(DE-HGF)0$$aLambert, A.$$b8
000891784 7001_ $$0P:(DE-HGF)0$$aLuo, B. P.$$b9
000891784 7001_ $$00000-0002-2980-0330$$aMolleker, S.$$b10
000891784 7001_ $$00000-0001-5111-8402$$aOrr, A.$$b11
000891784 7001_ $$00000-0001-8597-5832$$aSalawitch, R.$$b12
000891784 7001_ $$00000-0002-3025-5237$$aSnels, M.$$b13
000891784 7001_ $$0P:(DE-Juel1)129154$$aSpang, R.$$b14$$ufzj
000891784 7001_ $$00000-0003-4566-7936$$aWoiwode, W.$$b15
000891784 7001_ $$0P:(DE-HGF)0$$aPeter, T.$$b16
000891784 773__ $$0PERI:(DE-600)2035391-1$$a10.1029/2020RG000702$$n2$$pe2020RG000702$$tReviews of geophysics$$v59$$x0034-6853$$y2021
000891784 8564_ $$uhttps://juser.fz-juelich.de/record/891784/files/2020RG000702.pdf$$yOpenAccess
000891784 8767_ $$d2021-06-28$$eHybrid-OA$$jDEAL
000891784 909CO $$ooai:juser.fz-juelich.de:891784$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000891784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159462$$aForschungszentrum Jülich$$b0$$kFZJ
000891784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b6$$kFZJ
000891784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b14$$kFZJ
000891784 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000891784 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000891784 9141_ $$y2021
000891784 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000891784 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000891784 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891784 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000891784 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bREV GEOPHYS : 2019$$d2021-01-29
000891784 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000891784 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000891784 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000891784 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891784 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000891784 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREV GEOPHYS : 2019$$d2021-01-29
000891784 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000891784 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000891784 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000891784 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000891784 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000891784 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000891784 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000891784 920__ $$lyes
000891784 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000891784 9801_ $$aAPC
000891784 9801_ $$aFullTexts
000891784 980__ $$ajournal
000891784 980__ $$aVDB
000891784 980__ $$aI:(DE-Juel1)IEK-7-20101013
000891784 980__ $$aAPC
000891784 980__ $$aUNRESTRICTED
000891784 981__ $$aI:(DE-Juel1)ICE-4-20101013