Home > Workflow collections > Publication Charges > Polar Stratospheric Clouds: Satellite Observations, Processes, and Role in Ozone Depletion > print |
001 | 891784 | ||
005 | 20240712100848.0 | ||
024 | 7 | _ | |a 10.1029/2020RG000702 |2 doi |
024 | 7 | _ | |a 0034-6853 |2 ISSN |
024 | 7 | _ | |a 0096-1043 |2 ISSN |
024 | 7 | _ | |a 1944-9208 |2 ISSN |
024 | 7 | _ | |a 8755-1209 |2 ISSN |
024 | 7 | _ | |a 2128/27937 |2 Handle |
024 | 7 | _ | |a altmetric:103365664 |2 altmetric |
024 | 7 | _ | |a WOS:000667476800006 |2 WOS |
037 | _ | _ | |a FZJ-2021-01731 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Tritscher, I. |0 P:(DE-Juel1)159462 |b 0 |e Corresponding author |
245 | _ | _ | |a Polar Stratospheric Clouds: Satellite Observations, Processes, and Role in Ozone Depletion |
260 | _ | _ | |a Hoboken, NJ |c 2021 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1624958517_29207 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Polar stratospheric clouds (PSCs) play important roles in stratospheric ozone depletion during winter and spring at high latitudes (e.g., the Antarctic ozone hole). PSC particles provide sites for heterogeneous reactions that convert stable chlorine reservoir species to radicals that destroy ozone catalytically. PSCs also prolong ozone depletion by delaying chlorine deactivation through the removal of gas-phase HNO3 and H2O by sedimentation of large nitric acid trihydrate (NAT) and ice particles. Contemporary observations by the spaceborne instruments Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Microwave Limb Sounder (MLS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) have provided an unprecedented polar vortex-wide climatological view of PSC occurrence and composition in both hemispheres. These data have spurred advances in our understanding of PSC formation and related dynamical processes, especially the firm evidence of widespread heterogeneous nucleation of both NAT and ice PSC particles, perhaps on nuclei of meteoritic origin. Heterogeneous chlorine activation appears to be well understood. Reaction coefficients on/in liquid droplets have been measured accurately, and while uncertainties remain for reactions on solid NAT and ice particles, they are considered relatively unimportant since under most conditions chlorine activation occurs on/in liquid droplets. There have been notable advances in the ability of chemical transport and chemistry-climate models to reproduce PSC temporal/spatial distributions and composition observed from space. Continued spaceborne PSC observations will facilitate further improvements in the representation of PSC processes in global models and enable more accurate projections of the evolution of polar ozone and the global ozone layer as climate changes. |
536 | _ | _ | |a 211 - Die Atmosphäre im globalen Wandel (POF4-211) |0 G:(DE-HGF)POF4-211 |c POF4-211 |x 0 |f POF IV |
536 | _ | _ | |a DFG project 310479827 - Stratosphärische Wasserdampf Simulationen: Von den Polarregionen zur Tropischen Tropopause |0 G:(GEPRIS)310479827 |c 310479827 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Pitts, M. C. |0 0000-0001-8240-7223 |b 1 |e Corresponding author |
700 | 1 | _ | |a Poole, L. R. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Alexander, S. P. |0 0000-0001-6823-8857 |b 3 |
700 | 1 | _ | |a Cairo, F. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Chipperfield, M. P. |0 0000-0002-6803-4149 |b 5 |
700 | 1 | _ | |a Grooß, J.-U. |0 P:(DE-Juel1)129122 |b 6 |
700 | 1 | _ | |a Höpfner, M. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Lambert, A. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Luo, B. P. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Molleker, S. |0 0000-0002-2980-0330 |b 10 |
700 | 1 | _ | |a Orr, A. |0 0000-0001-5111-8402 |b 11 |
700 | 1 | _ | |a Salawitch, R. |0 0000-0001-8597-5832 |b 12 |
700 | 1 | _ | |a Snels, M. |0 0000-0002-3025-5237 |b 13 |
700 | 1 | _ | |a Spang, R. |0 P:(DE-Juel1)129154 |b 14 |u fzj |
700 | 1 | _ | |a Woiwode, W. |0 0000-0003-4566-7936 |b 15 |
700 | 1 | _ | |a Peter, T. |0 P:(DE-HGF)0 |b 16 |
773 | _ | _ | |a 10.1029/2020RG000702 |0 PERI:(DE-600)2035391-1 |n 2 |p e2020RG000702 |t Reviews of geophysics |v 59 |y 2021 |x 0034-6853 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891784/files/2020RG000702.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:891784 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB:Earth_Environment |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)159462 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129122 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)129154 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-211 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Die Atmosphäre im globalen Wandel |x 0 |
913 | 0 | _ | |a DE-HGF |b Erde und Umwelt |l Atmosphäre und Klima |1 G:(DE-HGF)POF3-240 |0 G:(DE-HGF)POF3-244 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-200 |4 G:(DE-HGF)POF |v Composition and dynamics of the upper troposphere and middle atmosphere |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-29 |
915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b REV GEOPHYS : 2019 |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-29 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-29 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b REV GEOPHYS : 2019 |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|