000891849 001__ 891849 000891849 005__ 20240712113104.0 000891849 0247_ $$2doi$$a10.1039/D1MA00009H 000891849 0247_ $$2Handle$$a2128/27841 000891849 0247_ $$2altmetric$$aaltmetric:103741449 000891849 0247_ $$2WOS$$aWOS:000639982700001 000891849 037__ $$aFZJ-2021-01769 000891849 082__ $$a540 000891849 1001_ $$0P:(DE-Juel1)181055$$aStolz, Lukas$$b0$$ufzj 000891849 245__ $$aRealizing poly(ethylene oxide) as a polymer for solid electrolytes in high voltage lithium batteries via simple modification of the cell setup 000891849 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2021 000891849 3367_ $$2DRIVER$$aarticle 000891849 3367_ $$2DataCite$$aOutput Types/Journal article 000891849 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715085410_7023 000891849 3367_ $$2BibTeX$$aARTICLE 000891849 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000891849 3367_ $$00$$2EndNote$$aJournal Article 000891849 520__ $$aPure, i.e., linear poly(ethylene oxide)-based solid polymer electrolyte (PEO-based SPE) as a common benchmark system for Li metal batteries (LMBs) is frequently assumed to be unsuitable for high voltage applications e.g., with LiNi0.6Mn0.2Co0.2O2 (NMC622)-based cathodes. In fact, a destructive failure appears immediately after cell operation, seen by a random-like “voltage noise” during charge, rendering continuous charge/discharge cycling in e.g., NMC622||Li cells not possible. Counterintuitively, this failure is a result of short-circuits in the course of e.g., Li dendrite penetration. It is shown that the distance between the electrodes plays a crucial role. This failure is more likely with a lower distance, particularly when the SPE is mechanically prone to shrinkage, for example at higher temperatures as systematically revealed by mechanical compression tests. Additionally, the active mass loading has a crucial impact on short circuits, and thus the “voltage noise” failure, as well. An effective and practically simple solution to realize cell operation with a PEO-based SPE is the incorporation of a spacer between the electrodes. This modification prevents the detrimental shrinkage and enables charge/discharge cycling performance in NMC622||Li cells with a defined and constant electrode distance, thus without voltage noise, and finally fulfills a reasonable benchmark for systematic R&D with specific capacities above 150 mA h g−1 even at 40 °C. 000891849 536__ $$0G:(DE-HGF)POF4-121$$a121 - Photovoltaik und Windenergie (POF4-121)$$cPOF4-121$$fPOF IV$$x0 000891849 588__ $$aDataset connected to CrossRef 000891849 7001_ $$0P:(DE-Juel1)169878$$aHomann, Gerrit$$b1 000891849 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$eCorresponding author$$ufzj 000891849 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b3$$eCorresponding author 000891849 773__ $$0PERI:(DE-600)3031236-X$$a10.1039/D1MA00009H$$gVol. 2, no. 10, p. 3251 - 3256$$n10$$p3251-3256$$tMaterials advances$$v2$$x2633-5409$$y2021 000891849 8564_ $$uhttps://juser.fz-juelich.de/record/891849/files/d1ma00009h-1.pdf$$yOpenAccess 000891849 8767_ $$8INV_010939$$92021-04-15$$d2021-04-19$$eCover$$jZahlung erfolgt$$zGBP 1000,-, Belegnr. 1200166283 / 2021 000891849 909CO $$ooai:juser.fz-juelich.de:891849$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000891849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181055$$aForschungszentrum Jülich$$b0$$kFZJ 000891849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169878$$aForschungszentrum Jülich$$b1$$kFZJ 000891849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ 000891849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b3$$kFZJ 000891849 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0 000891849 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000891849 9141_ $$y2021 000891849 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000891849 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0 000891849 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER ADV : 2022$$d2024-02-05 000891849 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-02-05 000891849 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-02-05 000891849 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:05:08Z 000891849 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:05:08Z 000891849 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:05:08Z 000891849 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-02-05 000891849 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-02-05 000891849 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-02-05 000891849 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMATER ADV : 2022$$d2024-02-05 000891849 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-02-05 000891849 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-02-05 000891849 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000891849 9801_ $$aAPC 000891849 9801_ $$aFullTexts 000891849 980__ $$ajournal 000891849 980__ $$aVDB 000891849 980__ $$aI:(DE-Juel1)IEK-12-20141217 000891849 980__ $$aAPC 000891849 980__ $$aUNRESTRICTED 000891849 981__ $$aI:(DE-Juel1)IMD-4-20141217