001     891859
005     20240711114057.0
024 7 _ |a 10.1007/s42864-021-00079-5
|2 doi
024 7 _ |a 2128/27757
|2 Handle
024 7 _ |a WOS:000879799900009
|2 WOS
037 _ _ |a FZJ-2021-01779
100 1 _ |a Bachurina, Diana
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Self-passivating smart tungsten alloys for DEMO: a progress in joining and upscale for a first wall mockup
260 _ _ |a Singapore
|c 2021
|b Springer Singapore
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715085372_1367
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Self-passivating, so-called smart alloys are under development for a future fusion power plant. These alloys containing tungsten, chromium and yttrium must possess an acceptable plasma performance during a regular plasma operation of a power plant and demonstrate the suppression of non-desirable oxidation of tungsten in case of an accident. The up-scaling of the bulk smart alloys to the reactor-relevant sizes has begun and the first samples with a diameter of 50 mm and thickness of 5 mm became available. The samples feature high relative density of above 99% and good homogeneity. With production of bulk samples, the research program on joining the smart alloy to the structural material was initiated. In a present study, the novel titanium–zirconium–beryllium braze was applied successfully to join the smart alloy to the Rusfer-reduced-activation steel. The braze has survived at least a hundred of cyclic thermal excursions in the range of 300–600 °C without mechanical destruction.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tan, Xiaoyue
|0 P:(DE-Juel1)180592
|b 1
|e Corresponding author
700 1 _ |a Klein, Felix
|0 P:(DE-Juel1)166427
|b 2
700 1 _ |a Suchkov, Alexey
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Litnovsky, Andrey
|0 P:(DE-Juel1)130090
|b 4
|e Corresponding author
700 1 _ |a Schmitz, Janina
|0 P:(DE-Juel1)166256
|b 5
700 1 _ |a Gonzalez-Julian, Jesus
|0 P:(DE-Juel1)162271
|b 6
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 7
700 1 _ |a Coenen, Jan Willem
|0 P:(DE-Juel1)2594
|b 8
700 1 _ |a Wu, Yu-Cheng
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 10
773 _ _ |a 10.1007/s42864-021-00079-5
|g Vol. 3, no. 1, p. 101 - 115
|0 PERI:(DE-600)2970242-2
|n 1
|p 101–115
|t Tungsten
|v 3
|y 2021
|x 2661-8028
856 4 _ |u https://juser.fz-juelich.de/record/891859/files/Bachurina2021_Article_Self-passivatingSmartTungstenA-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891859
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180592
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Plasma-Wall-Interaction
|x 0
914 1 _ |y 2021
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TUNGSTEN-SINGAPORE : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b TUNGSTEN-SINGAPORE : 2022
|d 2023-08-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21