000891904 001__ 891904
000891904 005__ 20240712084515.0
000891904 0247_ $$2doi$$a10.1038/s41560-021-00806-9
000891904 0247_ $$2Handle$$a2128/27885
000891904 0247_ $$2altmetric$$aaltmetric:104014608
000891904 0247_ $$2WOS$$aWOS:000640742200001
000891904 037__ $$aFZJ-2021-01816
000891904 041__ $$aEnglish
000891904 082__ $$a330
000891904 1001_ $$0P:(DE-Juel1)165230$$aKöhler, Malte$$b0$$eCorresponding author
000891904 245__ $$aA silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%
000891904 260__ $$aLondon$$bNature Publishing Group$$c2021
000891904 3367_ $$2DRIVER$$aarticle
000891904 3367_ $$2DataCite$$aOutput Types/Journal article
000891904 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622467678_7876
000891904 3367_ $$2BibTeX$$aARTICLE
000891904 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891904 3367_ $$00$$2EndNote$$aJournal Article
000891904 520__ $$aA highly transparent passivating contact (TPC) as front contact for crystalline silicon (c-Si) solar cells could in principle combine high conductivity, excellent surface passivation and high optical transparency. However, the simultaneous optimization of these features remains challenging. Here, we present a TPC consisting of a silicon-oxide tunnel layer followed by two layers of hydrogenated nanocrystalline silicon carbide (nc-SiC:H(n)) deposited at different temperatures and a sputtered indium tin oxide (ITO) layer (c-Si(n)/SiO2/nc-SiC:H(n)/ITO). While the wide band gap of nc-SiC:H(n) ensures high optical transparency, the double layer design enables good passivation and high conductivity translating into an improved short-circuit current density (40.87 mA cm−2), fill factor (80.9%) and efficiency of 23.99 ± 0.29% (certified). Additionally, this contact avoids the need for additional hydrogenation or high-temperature postdeposition annealing steps. We investigate the passivation mechanism and working principle of the TPC and provide a loss analysis based on numerical simulations outlining pathways towards conversion efficiencies of 26%.
000891904 536__ $$0G:(DE-HGF)POF4-535$$a535 - Materials Information Discovery (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000891904 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000891904 7001_ $$0P:(DE-Juel1)162141$$aPomaska, Manuel$$b1
000891904 7001_ $$0P:(DE-HGF)0$$aProcel, Paul$$b2
000891904 7001_ $$0P:(DE-HGF)0$$aSantbergen, Rudi$$b3
000891904 7001_ $$0P:(DE-HGF)0$$aZamchiy, Alexandr$$b4
000891904 7001_ $$0P:(DE-HGF)0$$aMacco, Bart$$b5
000891904 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b6$$ufzj
000891904 7001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b7$$ufzj
000891904 7001_ $$0P:(DE-Juel1)180314$$aCao, Pengfei$$b8$$ufzj
000891904 7001_ $$0P:(DE-Juel1)159235$$aKlingebiel, Benjamin$$b9$$ufzj
000891904 7001_ $$0P:(DE-Juel1)174415$$aLi, Shenghao$$b10
000891904 7001_ $$0P:(DE-Juel1)178007$$aEberst, Alexander$$b11
000891904 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b12$$ufzj
000891904 7001_ $$0P:(DE-Juel1)178049$$aQiu, Kaifu$$b13
000891904 7001_ $$00000-0001-7673-0163$$aIsabella, Olindo$$b14
000891904 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b15$$ufzj
000891904 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b16
000891904 7001_ $$0P:(DE-HGF)0$$aRau, Uwe$$b17
000891904 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b18
000891904 773__ $$0PERI:(DE-600)2847369-3$$a10.1038/s41560-021-00806-9$$p529–537$$tNature energy$$v6$$x2058-7546$$y2021
000891904 8564_ $$uhttps://juser.fz-juelich.de/record/891904/files/s41560-021-00806-9.pdf$$yOpenAccess
000891904 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000891904 909CO $$ooai:juser.fz-juelich.de:891904$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165230$$aForschungszentrum Jülich$$b0$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162141$$aForschungszentrum Jülich$$b1$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b6$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b7$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180314$$aForschungszentrum Jülich$$b8$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159235$$aForschungszentrum Jülich$$b9$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174415$$aForschungszentrum Jülich$$b10$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178007$$aForschungszentrum Jülich$$b11$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich$$b12$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178049$$aForschungszentrum Jülich$$b13$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich$$b15$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b16$$kFZJ
000891904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b18$$kFZJ
000891904 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000891904 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000891904 9141_ $$y2021
000891904 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000891904 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000891904 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000891904 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT ENERGY : 2019$$d2021-02-04
000891904 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000891904 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000891904 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891904 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000891904 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNAT ENERGY : 2019$$d2021-02-04
000891904 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000891904 920__ $$lyes
000891904 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000891904 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x1
000891904 9801_ $$aFullTexts
000891904 980__ $$ajournal
000891904 980__ $$aVDB
000891904 980__ $$aUNRESTRICTED
000891904 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891904 980__ $$aI:(DE-Juel1)IEK-5-20101013
000891904 980__ $$aAPC
000891904 981__ $$aI:(DE-Juel1)IMD-3-20101013