Home > Publications database > A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24% |
Journal Article | FZJ-2021-01816 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2021
Nature Publishing Group
London
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/27885 doi:10.1038/s41560-021-00806-9
Abstract: A highly transparent passivating contact (TPC) as front contact for crystalline silicon (c-Si) solar cells could in principle combine high conductivity, excellent surface passivation and high optical transparency. However, the simultaneous optimization of these features remains challenging. Here, we present a TPC consisting of a silicon-oxide tunnel layer followed by two layers of hydrogenated nanocrystalline silicon carbide (nc-SiC:H(n)) deposited at different temperatures and a sputtered indium tin oxide (ITO) layer (c-Si(n)/SiO2/nc-SiC:H(n)/ITO). While the wide band gap of nc-SiC:H(n) ensures high optical transparency, the double layer design enables good passivation and high conductivity translating into an improved short-circuit current density (40.87 mA cm−2), fill factor (80.9%) and efficiency of 23.99 ± 0.29% (certified). Additionally, this contact avoids the need for additional hydrogenation or high-temperature postdeposition annealing steps. We investigate the passivation mechanism and working principle of the TPC and provide a loss analysis based on numerical simulations outlining pathways towards conversion efficiencies of 26%.
![]() |
The record appears in these collections: |