Home > Publications database > A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24% > print |
001 | 891904 | ||
005 | 20240712084515.0 | ||
024 | 7 | _ | |a 10.1038/s41560-021-00806-9 |2 doi |
024 | 7 | _ | |a 2128/27885 |2 Handle |
024 | 7 | _ | |a altmetric:104014608 |2 altmetric |
024 | 7 | _ | |a WOS:000640742200001 |2 WOS |
037 | _ | _ | |a FZJ-2021-01816 |
041 | _ | _ | |a English |
082 | _ | _ | |a 330 |
100 | 1 | _ | |a Köhler, Malte |0 P:(DE-Juel1)165230 |b 0 |e Corresponding author |
245 | _ | _ | |a A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24% |
260 | _ | _ | |a London |c 2021 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1622467678_7876 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A highly transparent passivating contact (TPC) as front contact for crystalline silicon (c-Si) solar cells could in principle combine high conductivity, excellent surface passivation and high optical transparency. However, the simultaneous optimization of these features remains challenging. Here, we present a TPC consisting of a silicon-oxide tunnel layer followed by two layers of hydrogenated nanocrystalline silicon carbide (nc-SiC:H(n)) deposited at different temperatures and a sputtered indium tin oxide (ITO) layer (c-Si(n)/SiO2/nc-SiC:H(n)/ITO). While the wide band gap of nc-SiC:H(n) ensures high optical transparency, the double layer design enables good passivation and high conductivity translating into an improved short-circuit current density (40.87 mA cm−2), fill factor (80.9%) and efficiency of 23.99 ± 0.29% (certified). Additionally, this contact avoids the need for additional hydrogenation or high-temperature postdeposition annealing steps. We investigate the passivation mechanism and working principle of the TPC and provide a loss analysis based on numerical simulations outlining pathways towards conversion efficiencies of 26%. |
536 | _ | _ | |a 535 - Materials Information Discovery (POF4-535) |0 G:(DE-HGF)POF4-535 |c POF4-535 |x 0 |f POF IV |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Pomaska, Manuel |0 P:(DE-Juel1)162141 |b 1 |
700 | 1 | _ | |a Procel, Paul |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Santbergen, Rudi |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Zamchiy, Alexandr |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Macco, Bart |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Lambertz, Andreas |0 P:(DE-Juel1)130263 |b 6 |u fzj |
700 | 1 | _ | |a Duan, Weiyuan |0 P:(DE-Juel1)169946 |b 7 |u fzj |
700 | 1 | _ | |a Cao, Pengfei |0 P:(DE-Juel1)180314 |b 8 |u fzj |
700 | 1 | _ | |a Klingebiel, Benjamin |0 P:(DE-Juel1)159235 |b 9 |u fzj |
700 | 1 | _ | |a Li, Shenghao |0 P:(DE-Juel1)174415 |b 10 |
700 | 1 | _ | |a Eberst, Alexander |0 P:(DE-Juel1)178007 |b 11 |
700 | 1 | _ | |a Luysberg, Martina |0 P:(DE-Juel1)130811 |b 12 |u fzj |
700 | 1 | _ | |a Qiu, Kaifu |0 P:(DE-Juel1)178049 |b 13 |
700 | 1 | _ | |a Isabella, Olindo |0 0000-0001-7673-0163 |b 14 |
700 | 1 | _ | |a Finger, Friedhelm |0 P:(DE-Juel1)130238 |b 15 |u fzj |
700 | 1 | _ | |a Kirchartz, Thomas |0 P:(DE-Juel1)159457 |b 16 |
700 | 1 | _ | |a Rau, Uwe |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Ding, Kaining |0 P:(DE-Juel1)130233 |b 18 |
773 | _ | _ | |a 10.1038/s41560-021-00806-9 |0 PERI:(DE-600)2847369-3 |p 529–537 |t Nature energy |v 6 |y 2021 |x 2058-7546 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891904/files/s41560-021-00806-9.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:891904 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165230 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162141 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130263 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)169946 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)180314 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)159235 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)174415 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)178007 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)130811 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)178049 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)130238 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 16 |6 P:(DE-Juel1)159457 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 18 |6 P:(DE-Juel1)130233 |
913 | 0 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-02-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT ENERGY : 2019 |d 2021-02-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a IF >= 40 |0 StatID:(DE-HGF)9940 |2 StatID |b NAT ENERGY : 2019 |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|