000891936 001__ 891936
000891936 005__ 20240712113106.0
000891936 0247_ $$2doi$$a10.1002/anie.202016716
000891936 0247_ $$2ISSN$$a0570-0833
000891936 0247_ $$2ISSN$$a1433-7851
000891936 0247_ $$2ISSN$$a1521-3773
000891936 0247_ $$2Handle$$a2128/31288
000891936 0247_ $$2altmetric$$aaltmetric:103376571
000891936 0247_ $$2pmid$$apmid:33645903
000891936 0247_ $$2WOS$$aWOS:000646717700001
000891936 037__ $$aFZJ-2021-01838
000891936 082__ $$a540
000891936 1001_ $$0P:(DE-Juel1)174235$$aAtik, Jaschar$$b0$$ufzj
000891936 245__ $$aCation‐Assisted Lithium Ion Transport for High Performance PEO‑based Ternary Solid Polymer Electrolytes
000891936 260__ $$aWeinheim$$bWiley-VCH$$c2021
000891936 3367_ $$2DRIVER$$aarticle
000891936 3367_ $$2DataCite$$aOutput Types/Journal article
000891936 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655124490_29451
000891936 3367_ $$2BibTeX$$aARTICLE
000891936 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891936 3367_ $$00$$2EndNote$$aJournal Article
000891936 520__ $$aIonic liquids (ILs) allow improvement of the ionic conductivity of ternary PEO-based solid polymer electrolytes. However, the lack of Li-ion coordination of these plasticizers and the addition of extra ions results in a low Li-ion conductivity. An oligo(ethylene oxide)-based IL was synthesized to overcome these limitations and enable additional transport modes, resulting in a high Li-ion conductivity.
000891936 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000891936 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000891936 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b1$$eCorresponding author$$ufzj
000891936 7001_ $$0P:(DE-Juel1)179050$$aThienenkamp, Johannes Helmut$$b2$$ufzj
000891936 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b3$$ufzj
000891936 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
000891936 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b5
000891936 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202016716$$gp. anie.202016716$$n21$$p11919-11927$$tAngewandte Chemie / International edition$$v60$$x1521-3773$$y2021
000891936 8564_ $$uhttps://juser.fz-juelich.de/record/891936/files/Angew%20Chem%20Int%20Ed%20-%202021%20-%20Atik%20-%20Cation%E2%80%90Assisted%20Lithium%E2%80%90Ion%20Transport%20for%20High%E2%80%90Performance%20PEO%E2%80%90based%20Ternary%20Solid.pdf$$yOpenAccess
000891936 8767_ $$d2021-02-12$$eAPC$$jDEAL$$lDeposit: Wiley
000891936 909CO $$ooai:juser.fz-juelich.de:891936$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174235$$aForschungszentrum Jülich$$b0$$kFZJ
000891936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b1$$kFZJ
000891936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179050$$aForschungszentrum Jülich$$b2$$kFZJ
000891936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b3$$kFZJ
000891936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000891936 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000891936 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000891936 9141_ $$y2022
000891936 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000891936 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891936 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2019$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bANGEW CHEM INT EDIT : 2019$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000891936 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891936 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000891936 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000891936 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000891936 920__ $$lyes
000891936 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000891936 9801_ $$aAPC
000891936 9801_ $$aFullTexts
000891936 980__ $$ajournal
000891936 980__ $$aVDB
000891936 980__ $$aUNRESTRICTED
000891936 980__ $$aI:(DE-Juel1)IEK-12-20141217
000891936 980__ $$aAPC
000891936 981__ $$aI:(DE-Juel1)IMD-4-20141217