000891950 001__ 891950
000891950 005__ 20241127124644.0
000891950 0247_ $$2doi$$a10.1039/D0GC03865B
000891950 0247_ $$2ISSN$$a1463-9262
000891950 0247_ $$2ISSN$$a1463-9270
000891950 0247_ $$2Handle$$a2128/27673
000891950 0247_ $$2WOS$$aWOS:000629630600020
000891950 037__ $$aFZJ-2021-01846
000891950 082__ $$a540
000891950 1001_ $$0P:(DE-Juel1)177000$$aHuang, Hong$$b0$$eCorresponding author
000891950 245__ $$aGreener production of dimethyl carbonate by the Power-to-Fuel concept: a comparative techno-economic analysis
000891950 260__ $$aCambridge$$bRSC$$c2021
000891950 3367_ $$2DRIVER$$aarticle
000891950 3367_ $$2DataCite$$aOutput Types/Journal article
000891950 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619194972_2074
000891950 3367_ $$2BibTeX$$aARTICLE
000891950 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891950 3367_ $$00$$2EndNote$$aJournal Article
000891950 520__ $$aPower-to-Fuel is an emerging concept that uses surplus electricity-powered H2 and CO2 to produce future fuels. Previously studied fuel candidates include methanol, Fischer–Tropsch, and ethers. Apart from these candidates, dimethyl carbonate (DMC) is increasingly recognized as a viable fuel. Various new production pathways are being actively developed encouraged by its wider range of applications. In this study, we first performed a preliminary screening of available pathways with respect to their levels of technical maturity and their compliance with green chemistry principles. The selected pathways are oxidative carbonylation of methanol, direct urea methanolysis as well as indirect urea methanolysis via ethylene carbonate and propylene carbonate routes. We designed the processes and simulated the material and energy balances in the context of the Power-to-Fuel concept. Subsequently, a techno-economic analysis was performed to assess their viability. From the analysis, we found that the process steps of methanol and urea syntheses are the major capital investment contributors, rather than the DMC synthesis step itself. The direct urea methanolysis exhibits the highest energy efficiency of 48.5% and the lowest cost of manufacturing (COM) of 2.19 € per lDE. The oxidative carbonylation of methanol is featured with the lowest capital expenditure (CAPEX) and utility consumption. Both the indirect urea methanolysis pathways have better conversions than the direct urea methanolysis, but their advantages can only be seen provided that the utility consumption is minimised. Under current market conditions, only the direct urea methanolysis pathway is slightly profitable by the net present value (NPV) and minimum selling price (MSP). The hydrogen price is found to be the dominant economic driver of all pathways, with the oxidative carbonylation of methanol in particular.
000891950 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000891950 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x1
000891950 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x2
000891950 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x3
000891950 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x4
000891950 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000891950 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b1
000891950 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b2
000891950 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3
000891950 773__ $$0PERI:(DE-600)2006274-6$$a10.1039/D0GC03865B$$gVol. 23, no. 4, p. 1734 - 1747$$n4$$p1734 - 1747$$tGreen chemistry$$v23$$x1463-9270$$y2021
000891950 8564_ $$uhttps://juser.fz-juelich.de/record/891950/files/d0gc03865b.pdf$$yOpenAccess
000891950 8767_ $$d2021-04-21$$eHybrid-OA$$jPublish and Read
000891950 909CO $$ooai:juser.fz-juelich.de:891950$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000891950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177000$$aForschungszentrum Jülich$$b0$$kFZJ
000891950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b1$$kFZJ
000891950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b2$$kFZJ
000891950 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
000891950 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b3$$kRWTH
000891950 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000891950 9130_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x1
000891950 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000891950 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000891950 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x2
000891950 9141_ $$y2021
000891950 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000891950 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891950 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGREEN CHEM : 2019$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-02-03$$wger
000891950 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-03$$wger
000891950 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGREEN CHEM : 2019$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000891950 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000891950 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000891950 920__ $$lyes
000891950 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000891950 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000891950 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2
000891950 9801_ $$aAPC
000891950 9801_ $$aFullTexts
000891950 980__ $$ajournal
000891950 980__ $$aVDB
000891950 980__ $$aUNRESTRICTED
000891950 980__ $$aI:(DE-Juel1)IEK-14-20191129
000891950 980__ $$aI:(DE-Juel1)IEK-3-20101013
000891950 980__ $$aI:(DE-82)080011_20140620
000891950 980__ $$aAPC
000891950 981__ $$aI:(DE-Juel1)IET-4-20191129
000891950 981__ $$aI:(DE-Juel1)ICE-2-20101013
000891950 981__ $$aI:(DE-Juel1)IET-4-20191129