000892048 001__ 892048
000892048 005__ 20211018113107.0
000892048 0247_ $$2doi$$a10.1016/j.yfrne.2021.100915
000892048 0247_ $$2ISSN$$a0091-3022
000892048 0247_ $$2ISSN$$a1095-6808
000892048 0247_ $$2Handle$$a2128/27688
000892048 0247_ $$2pmid$$a33862036
000892048 0247_ $$2WOS$$aWOS:000701618700009
000892048 037__ $$aFZJ-2021-01899
000892048 082__ $$a610
000892048 1001_ $$0P:(DE-Juel1)159475$$aYao, Li$$b0
000892048 245__ $$aA multimodal meta-analysis of regional structural and functional brain alterations in type 2 diabetes
000892048 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000892048 3367_ $$2DRIVER$$aarticle
000892048 3367_ $$2DataCite$$aOutput Types/Journal article
000892048 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619437145_2677
000892048 3367_ $$2BibTeX$$aARTICLE
000892048 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892048 3367_ $$00$$2EndNote$$aJournal Article
000892048 520__ $$aNeuroimaging studies have identified brain structural and functional alterations of type 2 diabetes mellitus (T2DM) patients; however, there is no systematic information on the relations between abnormalities in these two domains. We conducted a multimodal meta-analysis of voxel-based morphometry and regional resting-state functional MRI studies in T2DM, including fifteen structural datasets (693 patients and 684 controls) and sixteen functional datasets (378 patients and 358 controls). We found, in patients with T2DM compared to controls, conjoint decreased regional gray matter volume (GMV) and altered intrinsic activity mainly in the default mode network including bilateral superior temporal gyrus/Rolandic operculum, left middle and inferior temporal gyrus, and left supramarginal gyrus; decreased GMV alone in the limbic system; and functional abnormalities alone in the cerebellum, insula, and visual cortex. This meta-analysis identified complicated patterns of conjoint and dissociated brain alterations in T2DM patients, which may help provide new insight into the neuropathology of T2DM.
000892048 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000892048 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892048 7001_ $$0P:(DE-HGF)0$$aYang, Chengmin$$b1
000892048 7001_ $$0P:(DE-HGF)0$$aZhang, Wenjing$$b2
000892048 7001_ $$0P:(DE-HGF)0$$aLi, Siyi$$b3
000892048 7001_ $$0P:(DE-Juel1)176714$$aLi, Qian$$b4
000892048 7001_ $$0P:(DE-HGF)0$$aChen, Lizhou$$b5
000892048 7001_ $$0P:(DE-HGF)0$$aLui, Su$$b6
000892048 7001_ $$00000-0002-8324-9666$$aKemp, Graham J.$$b7
000892048 7001_ $$0P:(DE-HGF)0$$aBiswal, Bharat B.$$b8
000892048 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b9$$ufzj
000892048 7001_ $$0P:(DE-HGF)0$$aLi, Fei$$b10
000892048 7001_ $$00000-0002-5912-4871$$aGong, Qiyong$$b11$$eCorresponding author
000892048 773__ $$0PERI:(DE-600)1467532-8$$a10.1016/j.yfrne.2021.100915$$gVol. 62, p. 100915 -$$p100915 -$$tFrontiers in neuroendocrinology$$v62$$x0091-3022$$y2021
000892048 8564_ $$uhttps://juser.fz-juelich.de/record/892048/files/1-s2.0-S0091302221000170-main.pdf$$yOpenAccess
000892048 909CO $$ooai:juser.fz-juelich.de:892048$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892048 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b9$$kFZJ
000892048 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000892048 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000892048 9141_ $$y2021
000892048 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000892048 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000892048 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROENDOCRIN : 2019$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892048 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT NEUROENDOCRIN : 2019$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000892048 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000892048 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000892048 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000892048 980__ $$ajournal
000892048 980__ $$aVDB
000892048 980__ $$aUNRESTRICTED
000892048 980__ $$aI:(DE-Juel1)INM-4-20090406
000892048 9801_ $$aFullTexts