001     892086
005     20240313103124.0
024 7 _ |a 10.1093/texcom/tgab033
|2 doi
024 7 _ |a 2128/28448
|2 Handle
037 _ _ |a FZJ-2021-01922
041 _ _ |a English
082 _ _ |a 300
100 1 _ |a Dąbrowska, Paulina Anna
|0 P:(DE-Juel1)171408
|b 0
|e Corresponding author
245 _ _ |a On the complexity of resting state spiking activity in monkey motor cortex
260 _ _ |a Oxford
|c 2021
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1628592594_23647
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Resting state has been established as a classical paradigm of brain activity studies, mostly based on large scale measurements such as fMRI or M/EEG. This term typically refers to a behavioral state characterized by the absence of any task or stimuli. The corresponding neuronal activity is often called idle or ongoing. Numerous modeling studies on spiking neural networks claim to mimic such idle states, but compare their results to task– or stimulus-driven experiments, or to results from experiments with anesthetized subjects. Both approaches might lead to misleading conclusions. To provide a proper basis for comparing physiological and simulated network dynamics, we characterize simultaneously recorded single neurons' spiking activity in monkey motor cortex at rest and show the differences from spontaneous and task– or stimulus-induced movement conditions. We also distinguish between rest with open eyes and sleepy rest with eyes closed. The resting state with open eyes shows a significantly higher dimensionality, reduced firing rates and less balance between population level excitation and inhibition than behavior-related states.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|x 0
|f POF III
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|x 1
|f POF IV
536 _ _ |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|0 G:(GEPRIS)238707842
|c 238707842
|x 2
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|x 3
|f H2020-Adhoc-2014-20
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 4
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 5
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Voges, Nicole
|0 P:(DE-Juel1)168479
|b 1
700 1 _ |a von Papen, Michael
|0 P:(DE-Juel1)171972
|b 2
700 1 _ |a Ito, Junji
|0 P:(DE-Juel1)144576
|b 3
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 4
700 1 _ |a Riehle, Alexa
|0 P:(DE-Juel1)172858
|b 5
700 1 _ |a Brochier, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 7
773 _ _ |a 10.1093/texcom/tgab033
|g p. tgab033
|0 PERI:(DE-600)3040464-2
|n 3
|p tgab033
|t Cerebral Cortex Communications
|v 2
|y 2021
|x 2632-7376
787 0 _ |a Dąbrowska, Paulina Anna et.al.
|d Cold Spring Harbor : Cold Spring Harbor Laboratory, NY, 2020
|i IsParent
|0 FZJ-2020-02151
|r
|t On the complexity of resting state spiking activity in monkey motor cortex
856 4 _ |u https://juser.fz-juelich.de/record/892086/files/tgab033.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892086
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171408
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)171408
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156459
910 1 _ |a Aix-Marseille Université
|0 I:(DE-588b)1043886400
|k AMU
|b 5
|6 P:(DE-Juel1)172858
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172858
910 1 _ |a Aix-Marseille Université
|0 I:(DE-588b)1043886400
|k AMU
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144168
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)144168
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21