000892524 001__ 892524
000892524 005__ 20240712113122.0
000892524 0247_ $$2doi$$a10.1002/aenm.202003756
000892524 0247_ $$2ISSN$$a1614-6832
000892524 0247_ $$2ISSN$$a1614-6840
000892524 0247_ $$2Handle$$a2128/27781
000892524 0247_ $$2altmetric$$aaltmetric:98620763
000892524 0247_ $$2WOS$$aWOS:000611080200001
000892524 037__ $$aFZJ-2021-02132
000892524 082__ $$a050
000892524 1001_ $$0P:(DE-HGF)0$$aKlein, Sven$$b0
000892524 245__ $$aOn the Beneficial Impact of Li 2 CO 3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High‐Voltage Conditions
000892524 260__ $$aWeinheim$$bWiley-VCH$$c2021
000892524 3367_ $$2DRIVER$$aarticle
000892524 3367_ $$2DataCite$$aOutput Types/Journal article
000892524 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620805934_2915
000892524 3367_ $$2BibTeX$$aARTICLE
000892524 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892524 3367_ $$00$$2EndNote$$aJournal Article
000892524 520__ $$aLithium ion battery cells operating at high‐voltage typically suffer from severe capacity fading, known as ‘rollover’ failure. Here, the beneficial impact of Li2CO3 as an electrolyte additive for state‐of‐the‐art carbonate‐based electrolytes, which significantly improves the cycling performance of NCM523 ∥ graphite full‐cells operated at 4.5 V is elucidated. LIB cells using the electrolyte stored at 20 °C (with or without Li2CO3 additive) suffer from severe capacity decay due to parasitic transition metal (TM) dissolution/deposition and subsequent Li metal dendrite growth on graphite. In contrast, NCM523 ∥ graphite cells using the Li2CO3‐containing electrolyte stored at 40 °C display significantly improved capacity retention. The underlying mechanism is successfully elucidated: The rollover failure is inhibited, as Li2CO3 reacts with LiPF6 at 40 °C to in situ form lithium difluorophosphate, and its decomposition products in turn act as ‘scavenging’ agents for TMs (Ni and Co), thus preventing TM deposition and Li metal formation on graphite.
000892524 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000892524 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892524 7001_ $$0P:(DE-HGF)0$$aHarte, Patrick$$b1
000892524 7001_ $$0P:(DE-HGF)0$$aHenschel, Jonas$$b2
000892524 7001_ $$aBärmann, Peer$$b3
000892524 7001_ $$0P:(DE-Juel1)171270$$aBorzutzki, Kristina$$b4$$ufzj
000892524 7001_ $$0P:(DE-Juel1)171310$$aBeuse, Thomas$$b5
000892524 7001_ $$0P:(DE-HGF)0$$aWickeren, Stefan$$b6
000892524 7001_ $$0P:(DE-HGF)0$$aHeidrich, Bastian$$b7
000892524 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b8$$ufzj
000892524 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b9
000892524 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b10$$eCorresponding author
000892524 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b11$$eCorresponding author
000892524 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202003756$$gVol. 11, no. 10, p. 2003756 -$$n10$$p2003756 -$$tAdvanced energy materials$$v11$$x1614-6840$$y2021
000892524 8564_ $$uhttps://juser.fz-juelich.de/record/892524/files/aenm.202003756.pdf$$yOpenAccess
000892524 909CO $$ooai:juser.fz-juelich.de:892524$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171270$$aForschungszentrum Jülich$$b4$$kFZJ
000892524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b8$$kFZJ
000892524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b10$$kFZJ
000892524 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000892524 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000892524 9141_ $$y2021
000892524 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000892524 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892524 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2019$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000892524 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2019$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892524 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000892524 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000892524 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000892524 9801_ $$aFullTexts
000892524 980__ $$ajournal
000892524 980__ $$aVDB
000892524 980__ $$aUNRESTRICTED
000892524 980__ $$aI:(DE-Juel1)IEK-12-20141217
000892524 981__ $$aI:(DE-Juel1)IMD-4-20141217