Journal Article FZJ-2021-02132

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
On the Beneficial Impact of Li 2 CO 3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High‐Voltage Conditions

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Wiley-VCH Weinheim

Advanced energy materials 11(10), 2003756 - () [10.1002/aenm.202003756]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Lithium ion battery cells operating at high‐voltage typically suffer from severe capacity fading, known as ‘rollover’ failure. Here, the beneficial impact of Li2CO3 as an electrolyte additive for state‐of‐the‐art carbonate‐based electrolytes, which significantly improves the cycling performance of NCM523 ∥ graphite full‐cells operated at 4.5 V is elucidated. LIB cells using the electrolyte stored at 20 °C (with or without Li2CO3 additive) suffer from severe capacity decay due to parasitic transition metal (TM) dissolution/deposition and subsequent Li metal dendrite growth on graphite. In contrast, NCM523 ∥ graphite cells using the Li2CO3‐containing electrolyte stored at 40 °C display significantly improved capacity retention. The underlying mechanism is successfully elucidated: The rollover failure is inhibited, as Li2CO3 reacts with LiPF6 at 40 °C to in situ form lithium difluorophosphate, and its decomposition products in turn act as ‘scavenging’ agents for TMs (Ni and Co), thus preventing TM deposition and Li metal formation on graphite.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 122 - Elektrochemische Energiespeicherung (POF4-122) (POF4-122)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 25 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database
Open Access

 Record created 2021-05-11, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)