001     892524
005     20240712113122.0
024 7 _ |a 10.1002/aenm.202003756
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a 2128/27781
|2 Handle
024 7 _ |a altmetric:98620763
|2 altmetric
024 7 _ |a WOS:000611080200001
|2 WOS
037 _ _ |a FZJ-2021-02132
082 _ _ |a 050
100 1 _ |a Klein, Sven
|0 P:(DE-HGF)0
|b 0
245 _ _ |a On the Beneficial Impact of Li 2 CO 3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High‐Voltage Conditions
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1620805934_2915
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium ion battery cells operating at high‐voltage typically suffer from severe capacity fading, known as ‘rollover’ failure. Here, the beneficial impact of Li2CO3 as an electrolyte additive for state‐of‐the‐art carbonate‐based electrolytes, which significantly improves the cycling performance of NCM523 ∥ graphite full‐cells operated at 4.5 V is elucidated. LIB cells using the electrolyte stored at 20 °C (with or without Li2CO3 additive) suffer from severe capacity decay due to parasitic transition metal (TM) dissolution/deposition and subsequent Li metal dendrite growth on graphite. In contrast, NCM523 ∥ graphite cells using the Li2CO3‐containing electrolyte stored at 40 °C display significantly improved capacity retention. The underlying mechanism is successfully elucidated: The rollover failure is inhibited, as Li2CO3 reacts with LiPF6 at 40 °C to in situ form lithium difluorophosphate, and its decomposition products in turn act as ‘scavenging’ agents for TMs (Ni and Co), thus preventing TM deposition and Li metal formation on graphite.
536 _ _ |a 122 - Elektrochemische Energiespeicherung (POF4-122)
|0 G:(DE-HGF)POF4-122
|c POF4-122
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Harte, Patrick
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Henschel, Jonas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bärmann, Peer
|b 3
700 1 _ |a Borzutzki, Kristina
|0 P:(DE-Juel1)171270
|b 4
|u fzj
700 1 _ |a Beuse, Thomas
|0 P:(DE-Juel1)171310
|b 5
700 1 _ |a Wickeren, Stefan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Heidrich, Bastian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 8
|u fzj
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 10
|e Corresponding author
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 11
|e Corresponding author
773 _ _ |a 10.1002/aenm.202003756
|g Vol. 11, no. 10, p. 2003756 -
|0 PERI:(DE-600)2594556-7
|n 10
|p 2003756 -
|t Advanced energy materials
|v 11
|y 2021
|x 1614-6840
856 4 _ |u https://juser.fz-juelich.de/record/892524/files/aenm.202003756.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892524
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171270
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)166130
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV ENERGY MATER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21