000892531 001__ 892531
000892531 005__ 20240711092244.0
000892531 0247_ $$2doi$$a10.1016/j.actamat.2020.116542
000892531 0247_ $$2ISSN$$a1359-6454
000892531 0247_ $$2ISSN$$a1873-2453
000892531 0247_ $$2Handle$$a2128/27914
000892531 0247_ $$2altmetric$$aaltmetric:95882492
000892531 0247_ $$2WOS$$aWOS:000609936600021
000892531 037__ $$aFZJ-2021-02139
000892531 041__ $$aEnglish
000892531 082__ $$a670
000892531 1001_ $$0P:(DE-HGF)0$$aYang, Mujin$$b0$$eFirst author
000892531 245__ $$aPrecipitation behavior in G-phase strengthened ferritic stainless steels
000892531 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000892531 3367_ $$2DRIVER$$aarticle
000892531 3367_ $$2DataCite$$aOutput Types/Journal article
000892531 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623077412_25060
000892531 3367_ $$2BibTeX$$aARTICLE
000892531 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892531 3367_ $$00$$2EndNote$$aJournal Article
000892531 520__ $$aA series of G-phase strengthened ferritic stainless steels Fe-20Cr-3Ni-3Si-X (X = 2Mn, 1Mn-2Ti, 1Mn-2Nb and 1Mn-2Ta) are characterized after aging using experimental (microhardness, TEM and APT) and theoretical (DFT) techniques. The results indicate that the Ni16Mn6Si7 G-phase shows sluggish precipitation during aging treatment. This was attributed to the small difference in the enthalpy of formation between the Ni16Mn6Si7 G- and BCC phase and the requirement of high Ni:Fe ratio. A superfine Ni16Ti6Si7 G-phase was found to precipitate as a core accompanied with an “envelope” of Fe2TiSi-L21 Heusler phase during early aging (≤24 h) in the Ti containing alloy. This morphology is predicted to occur due to early Ni clustering in ferrite and a negative Ni concentration gradient away from the cluster that favors Fe2TiSi formation. The G-phases show only particle coarsening without obvious chemical composition evolution for further aging up to 96 h. A prominent hardness increase of 100-275 HV was also observed during aging. These findings provide valuable insight into methods for precipitating low lattice mismatch silicide phases for the development of future high strength steels.
000892531 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000892531 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892531 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000892531 7001_ $$0P:(DE-HGF)0$$aKing, Daniel. J. M.$$b1
000892531 7001_ $$0P:(DE-Juel1)168558$$aPovstugar, Ivan$$b2
000892531 7001_ $$0P:(DE-HGF)0$$aWen, Yuren$$b3
000892531 7001_ $$0P:(DE-HGF)0$$aLuan, Junhua$$b4
000892531 7001_ $$0P:(DE-Juel1)129742$$aKuhn, Bernd$$b5
000892531 7001_ $$0P:(DE-HGF)0$$aJiao, Zengbao$$b6
000892531 7001_ $$0P:(DE-HGF)0$$aWang, Cuiping$$b7$$eCorresponding author
000892531 7001_ $$0P:(DE-HGF)0$$aWenman, M. R.$$b8
000892531 7001_ $$0P:(DE-HGF)0$$aLiu, Xingjun$$b9$$eCorresponding author
000892531 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2020.116542$$gVol. 205, p. 116542 -$$p116542 -$$tActa materialia$$v205$$x1359-6454$$y2021
000892531 8564_ $$uhttps://juser.fz-juelich.de/record/892531/files/1-s2.0-S1359645420309794-main.pdf$$yRestricted
000892531 8564_ $$uhttps://juser.fz-juelich.de/record/892531/files/2020%20-%20Precipitation%20behavior%20in%20G-phase%20strengthened%20ferritic%20stainless%20steels.pdf$$yPublished on 2020-12-08. Available in OpenAccess from 2021-12-08.$$zStatID:(DE-HGF)0510
000892531 909CO $$ooai:juser.fz-juelich.de:892531$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892531 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168558$$aForschungszentrum Jülich$$b2$$kFZJ
000892531 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich$$b5$$kFZJ
000892531 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000892531 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000892531 9141_ $$y2021
000892531 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000892531 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000892531 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000892531 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2019$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2019$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000892531 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000892531 920__ $$lno
000892531 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x0
000892531 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000892531 9801_ $$aFullTexts
000892531 980__ $$ajournal
000892531 980__ $$aVDB
000892531 980__ $$aUNRESTRICTED
000892531 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000892531 980__ $$aI:(DE-Juel1)IEK-2-20101013
000892531 981__ $$aI:(DE-Juel1)IMD-1-20101013