000892556 001__ 892556
000892556 005__ 20220221143523.0
000892556 0247_ $$2doi$$a10.1103/PhysRevB.103.174413
000892556 0247_ $$2ISSN$$a1098-0121
000892556 0247_ $$2ISSN$$a2469-9977
000892556 0247_ $$2ISSN$$a0163-1829
000892556 0247_ $$2ISSN$$a0556-2805
000892556 0247_ $$2ISSN$$a1095-3795
000892556 0247_ $$2ISSN$$a1538-4489
000892556 0247_ $$2ISSN$$a1550-235X
000892556 0247_ $$2ISSN$$a2469-9950
000892556 0247_ $$2ISSN$$a2469-9969
000892556 0247_ $$2Handle$$a2128/27795
000892556 0247_ $$2altmetric$$aaltmetric:105690484
000892556 0247_ $$2WOS$$aWOS:000655863000002
000892556 037__ $$aFZJ-2021-02155
000892556 082__ $$a530
000892556 1001_ $$0P:(DE-HGF)0$$aMi, Xinrun$$b0$$eCorresponding author
000892556 245__ $$aStacking faults in α−RuCl3 revealed by local electric polarization
000892556 260__ $$aWoodbury, NY$$bInst.$$c2021
000892556 3367_ $$2DRIVER$$aarticle
000892556 3367_ $$2DataCite$$aOutput Types/Journal article
000892556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645447855_27839
000892556 3367_ $$2BibTeX$$aARTICLE
000892556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892556 3367_ $$00$$2EndNote$$aJournal Article
000892556 520__ $$aWe present out-of-plane dielectric and magnetodielectric measurements of single-crystalline α−RuCl3 with various degrees of stacking faults. A frequency-dependent, but field-independent, dielectric anomaly appears at TA(f=100kHz)∼4 K once both magnetic transitions at TN1∼7 K and TN2∼14 K set in. The observed dielectric anomaly is attributed to the emergence of possible local electric polarizations whose inversion symmetry is broken by inhomogeneously distributed stacking faults. A field-induced intermediate phase is only observed when a magnetic field is applied perpendicular to the Ru-Ru bonds for samples with minimal stacking faults. Less pronounced in-plane anisotropy is found in samples with a sizable contribution from stacking imperfections. Our findings suggest that dielectric measurement is a sensitive probe in detecting the structural and magnetic properties, which may be a promising tool, especially in studying α−RuCl3 thin-film devices. Moreover, the stacking details of RuCl3 layers strongly affect the ground state both in the magnetic and electric channels. Such a fragile ground state against stacking faults needs to be overcome for realistic applications utilizing the magnetic and/or electric properties of Kitaev-based physics in α−RuCl3.
000892556 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000892556 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000892556 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892556 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000892556 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000892556 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000892556 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000892556 7001_ $$0P:(DE-Juel1)171236$$aWang, Xiao$$b1
000892556 7001_ $$0P:(DE-HGF)0$$aGui, Hengrui$$b2
000892556 7001_ $$0P:(DE-HGF)0$$aPi, Maocai$$b3
000892556 7001_ $$0P:(DE-HGF)0$$aZheng, Tingting$$b4
000892556 7001_ $$0P:(DE-HGF)0$$aYang, Kunya$$b5
000892556 7001_ $$0P:(DE-HGF)0$$aGan, Yuhan$$b6
000892556 7001_ $$0P:(DE-HGF)0$$aWang, Peipei$$b7
000892556 7001_ $$0P:(DE-HGF)0$$aLi, Alei$$b8
000892556 7001_ $$0P:(DE-HGF)0$$aWang, Aifeng$$b9
000892556 7001_ $$0P:(DE-HGF)0$$aZhang, Liyuan$$b10
000892556 7001_ $$0P:(DE-Juel1)130991$$aSu, Yixi$$b11
000892556 7001_ $$0P:(DE-HGF)0$$aChai, Yisheng$$b12
000892556 7001_ $$0P:(DE-HGF)0$$aHe, Mingquan$$b13$$eCorresponding author
000892556 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.103.174413$$gVol. 103, no. 17, p. 174413$$n17$$p174413$$tPhysical review / B$$v103$$x2469-9969$$y2021
000892556 8564_ $$uhttps://juser.fz-juelich.de/record/892556/files/PhysRevB.103.174413.pdf$$yOpenAccess
000892556 8564_ $$uhttps://juser.fz-juelich.de/record/892556/files/su_stacking_faults_210413637.pdf$$yOpenAccess
000892556 909CO $$ooai:juser.fz-juelich.de:892556$$popenaire$$popen_access$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver
000892556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171236$$aForschungszentrum Jülich$$b1$$kFZJ
000892556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b11$$kFZJ
000892556 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000892556 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000892556 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000892556 9130_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000892556 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000892556 9130_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x3
000892556 9141_ $$y2021
000892556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000892556 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000892556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892556 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000892556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000892556 920__ $$lyes
000892556 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000892556 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000892556 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000892556 980__ $$ajournal
000892556 980__ $$aVDB
000892556 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000892556 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000892556 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000892556 980__ $$aUNRESTRICTED
000892556 9801_ $$aFullTexts