Home > Publications database > Stacking faults in α−RuCl3 revealed by local electric polarization |
Journal Article | FZJ-2021-02155 |
; ; ; ; ; ; ; ; ; ; ; ; ;
2021
Inst.
Woodbury, NY
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/27795 doi:10.1103/PhysRevB.103.174413
Abstract: We present out-of-plane dielectric and magnetodielectric measurements of single-crystalline α−RuCl3 with various degrees of stacking faults. A frequency-dependent, but field-independent, dielectric anomaly appears at TA(f=100kHz)∼4 K once both magnetic transitions at TN1∼7 K and TN2∼14 K set in. The observed dielectric anomaly is attributed to the emergence of possible local electric polarizations whose inversion symmetry is broken by inhomogeneously distributed stacking faults. A field-induced intermediate phase is only observed when a magnetic field is applied perpendicular to the Ru-Ru bonds for samples with minimal stacking faults. Less pronounced in-plane anisotropy is found in samples with a sizable contribution from stacking imperfections. Our findings suggest that dielectric measurement is a sensitive probe in detecting the structural and magnetic properties, which may be a promising tool, especially in studying α−RuCl3 thin-film devices. Moreover, the stacking details of RuCl3 layers strongly affect the ground state both in the magnetic and electric channels. Such a fragile ground state against stacking faults needs to be overcome for realistic applications utilizing the magnetic and/or electric properties of Kitaev-based physics in α−RuCl3.
Keyword(s): Magnetic Materials (1st) ; Condensed Matter Physics (2nd) ; Magnetism (2nd)
![]() |
The record appears in these collections: |