000892900 001__ 892900
000892900 005__ 20250129094405.0
000892900 0247_ $$2doi$$a10.1088/1367-2630/ac04c7
000892900 0247_ $$2Handle$$a2128/28008
000892900 0247_ $$2WOS$$aWOS:000662666400001
000892900 037__ $$aFZJ-2021-02424
000892900 041__ $$aEnglish
000892900 082__ $$a530
000892900 1001_ $$0P:(DE-Juel1)173818$$aBhatnagar-Schöffmann, Tanvi$$b0
000892900 245__ $$aDifferentiation between strain and charge mediated magnetoelectric coupling in La 0.7 Sr 0.3 MnO 3 / Pb(Mg 1/3 Nb 2/3 ) 0.7 Ti 0.3 O 3 (001)
000892900 260__ $$a[London]$$bIOP$$c2021
000892900 3367_ $$2DRIVER$$aarticle
000892900 3367_ $$2DataCite$$aOutput Types/Journal article
000892900 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710326245_3660
000892900 3367_ $$2BibTeX$$aARTICLE
000892900 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892900 3367_ $$00$$2EndNote$$aJournal Article
000892900 520__ $$aMagnetoelectric (ME) coupling in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (LSMO/PMN–PT (001)) has been probed in the past years to identify the underlying mechanism behind it. PMN–PT, which is well known for its excellent piezoelectric properties, also exhibits ferroelectricity. This motivates our interest to differentiate which effect is dominant for this 'voltage control of magnetism'. Here, we present results for the ME coupling at different temperatures: 300 K and 80 K. In this article we discuss and explain, how the nature of ME coupling is influenced by different parameters such as magnetic field, electric field, directional dependence (hard axis, easy axis) and temperature. Owing to large lattice mismatch between LSMO and PMN–PT, the strain-mediated coupling is strongly prevalent, however the change in strain behaviour from butterfly loop to linear loop is observed as a function of temperature. ME measurements are performed along hard axis [100] and easy axis [110] of LSMO in the presence of remanent magnetic field which showcases the pure influence of electric field on the system, resulting in a combination of strain- and charge-mediated coupling. The magnetic depth profile is probed by polarized neutron reflectometry as a function of electric field which demonstrates the existence of an interlayer with reduced nuclear scattering length density and reduced magnetic scattering length density at the interface. From transmission electron microscopy, stoichiometric variations are observed due to the presence of Mn3O4 particles at the interface.
000892900 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000892900 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000892900 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892900 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000892900 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000892900 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000892900 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000892900 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b1$$eCorresponding author
000892900 7001_ $$0P:(DE-Juel1)172634$$aSarkar, Anirban$$b2
000892900 7001_ $$0P:(DE-Juel1)169442$$aSchöffmann, Patrick$$b3$$eCorresponding author
000892900 7001_ $$0P:(DE-Juel1)173944$$aLan, Qianqian$$b4
000892900 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b5$$ufzj
000892900 7001_ $$0P:(DE-Juel1)144926$$aKovacs, Andras$$b6
000892900 7001_ $$0P:(DE-HGF)0$$aGrutter, Alexander$$b7
000892900 7001_ $$0P:(DE-HGF)0$$aKirby, Brian$$b8
000892900 7001_ $$0P:(DE-Juel1)164787$$aBeerwerth, Randolf$$b9
000892900 7001_ $$0P:(DE-Juel1)144775$$aWaschk, Markus$$b10
000892900 7001_ $$0P:(DE-Juel1)172029$$aStellhorn, Annika$$b11
000892900 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b12
000892900 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E$$b13
000892900 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b14
000892900 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/ac04c7$$p063043$$tNew journal of physics$$v23$$x1367-2630$$y2021
000892900 8564_ $$uhttps://juser.fz-juelich.de/record/892900/files/8177898_0.pdf
000892900 8564_ $$uhttps://juser.fz-juelich.de/record/892900/files/Bhatnagar-Sch%C3%B6ffmann_2021_New_J._Phys._23_063043.pdf$$yOpenAccess
000892900 8767_ $$88177898$$92021-05-26$$d2021-06-01$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200167665
000892900 909CO $$ooai:juser.fz-juelich.de:892900$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC$$popen_access$$popenaire
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173818$$aForschungszentrum Jülich$$b0$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich$$b1$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169442$$aForschungszentrum Jülich$$b3$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173944$$aForschungszentrum Jülich$$b4$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b5$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b6$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164787$$aForschungszentrum Jülich$$b9$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172029$$aForschungszentrum Jülich$$b11$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b12$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b13$$kFZJ
000892900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b14$$kFZJ
000892900 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000892900 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000892900 9130_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000892900 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000892900 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000892900 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000892900 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000892900 9141_ $$y2021
000892900 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000892900 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892900 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2019$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892900 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000892900 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000892900 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000892900 920__ $$lyes
000892900 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000892900 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000892900 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000892900 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x3
000892900 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x4
000892900 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x5
000892900 9801_ $$aAPC
000892900 9801_ $$aFullTexts
000892900 980__ $$ajournal
000892900 980__ $$aVDB
000892900 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000892900 980__ $$aI:(DE-Juel1)PGI-4-20110106
000892900 980__ $$aI:(DE-82)080009_20140620
000892900 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000892900 980__ $$aI:(DE-Juel1)PGI-5-20110106
000892900 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000892900 980__ $$aAPC
000892900 980__ $$aUNRESTRICTED
000892900 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000892900 981__ $$aI:(DE-Juel1)JCNS-2-20110106