000893057 001__ 893057
000893057 005__ 20240711085554.0
000893057 0247_ $$2doi$$a10.1111/jace.17907
000893057 0247_ $$2ISSN$$a0002-7820
000893057 0247_ $$2ISSN$$a1551-2916
000893057 0247_ $$2Handle$$a2128/28417
000893057 0247_ $$2WOS$$aWOS:000653243700001
000893057 037__ $$aFZJ-2021-02531
000893057 041__ $$aEnglish
000893057 082__ $$a660
000893057 1001_ $$0P:(DE-Juel1)174079$$aKindelmann, Moritz$$b0$$eCorresponding author
000893057 245__ $$aSegregation‐controlled densification and grain growth in rare earth‐doped Y 2 O 3
000893057 260__ $$aWesterville, Ohio$$bSoc.$$c2021
000893057 3367_ $$2DRIVER$$aarticle
000893057 3367_ $$2DataCite$$aOutput Types/Journal article
000893057 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1628150558_17466
000893057 3367_ $$2BibTeX$$aARTICLE
000893057 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893057 3367_ $$00$$2EndNote$$aJournal Article
000893057 520__ $$aCation doping of Y2O3 is an established approach for tailoring densification and grain growth during sintering. However, the segregation of doped cations to the grain boundary and their impact on processing are still not completely understood. Segregation can be driven by electrostatic effects due to charge mismatch with the host lattice or elastic effects induced by ion size mismatch. While segregation is caused by thermodynamics, it impacts diffusion and the kinetics of grain boundaries during densification and microstructure evolution. In this study, we utilize two isovalent dopants (La3+ and Gd3+), that is we focus on the elastic component of segregation. We investigate the densification as well as the grain growth kinetics of both doped and undoped Y2O3 during field-assisted sintering/spark plasma sintering (FAST/SPS). While Gd3+ is showing no significant effect on densification, La3+ resulted in a strongly reduced sintering activity. Furthermore, the analysis of the grain growth behavior during sintering and on predensified samples revealed a decrease in the grain growth coefficient, with La3+ having the strongest impact. The structure and chemistry at the grain boundary were observed by aberration-corrected TEM. While no structural change was caused by doping, the chemical analysis showed a strong segregation of La3+ to the grain boundary, which could not be observed for Gd3+. The results indicate that segregated La3+ causes a drastic decrease in grain boundary migration rates through solute drag as well as much slower sintering kinetics, likely caused by a decrease in the grain boundary self-diffusion due to segregation. This study further underlines the importance of the elastic contribution to cation segregation and establishes a clear relationship to grain growth and sintering kinetics, which are both decreased by segregation.
000893057 536__ $$0G:(DE-HGF)POF4-535$$a535 - Materials Information Discovery (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893057 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893057 7001_ $$0P:(DE-Juel1)174238$$aRan, Ke$$b1
000893057 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b2
000893057 7001_ $$00000-0001-6040-7054$$aMorita, Koji$$b3
000893057 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b4
000893057 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b5
000893057 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6
000893057 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17907$$gp. jace.17907$$n10$$p4946-4959$$tJournal of the American Ceramic Society$$v104$$x1551-2916$$y2021
000893057 8564_ $$uhttps://juser.fz-juelich.de/record/893057/files/jace.17907.pdf$$yOpenAccess
000893057 8767_ $$d2021-06-07$$eHybrid-OA$$jDEAL
000893057 909CO $$ooai:juser.fz-juelich.de:893057$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000893057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174079$$aForschungszentrum Jülich$$b0$$kFZJ
000893057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174238$$aForschungszentrum Jülich$$b1$$kFZJ
000893057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b2$$kFZJ
000893057 9101_ $$0I:(DE-HGF)0$$60000-0001-6040-7054$$aExternal Institute$$b3$$kExtern
000893057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b4$$kFZJ
000893057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b5$$kFZJ
000893057 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
000893057 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893057 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000893057 9141_ $$y2021
000893057 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000893057 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893057 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2019$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000893057 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893057 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000893057 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000893057 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000893057 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000893057 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000893057 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000893057 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000893057 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000893057 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000893057 9801_ $$aAPC
000893057 9801_ $$aFullTexts
000893057 980__ $$ajournal
000893057 980__ $$aVDB
000893057 980__ $$aUNRESTRICTED
000893057 980__ $$aI:(DE-Juel1)IEK-1-20101013
000893057 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000893057 980__ $$aAPC
000893057 981__ $$aI:(DE-Juel1)IMD-2-20101013