000893214 001__ 893214
000893214 005__ 20220930130319.0
000893214 0247_ $$2doi$$a10.3390/safety7030050
000893214 0247_ $$2Handle$$a2128/28151
000893214 0247_ $$2altmetric$$aaltmetric:108086659
000893214 0247_ $$2WOS$$aWOS:000701089200001
000893214 037__ $$aFZJ-2021-02631
000893214 082__ $$a610
000893214 1001_ $$0P:(DE-HGF)0$$aBerchtold, Florian$$b0
000893214 245__ $$aUncertainty Modelling in Metamodels for Fire Risk Analysis
000893214 260__ $$aBasel$$bMDPI$$c2021
000893214 3367_ $$2DRIVER$$aarticle
000893214 3367_ $$2DataCite$$aOutput Types/Journal article
000893214 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626172601_14697
000893214 3367_ $$2BibTeX$$aARTICLE
000893214 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893214 3367_ $$00$$2EndNote$$aJournal Article
000893214 520__ $$aIn risk-related research of fire safety engineering, metamodels are often applied to approximate the results of complex fire and evacuation simulations. This approximation may cause epistemic uncertainties, and the inherent uncertainties of evacuation simulations may lead to aleatory uncertainties. However, neither the epistemic ‘metamodel uncertainty’ nor the aleatory ‘inherent uncertainty’ have been included in the results of the metamodels for fire safety engineering. For this reason, this paper presents a metamodel that includes metamodel uncertainty and inherent uncertainty in the results of a risk analysis. This metamodel is based on moving least squares; the metamodel uncertainty is derived from the prediction interval. The inherent uncertainty is modelled with an original approach, directly using all replications of evacuation scenarios without the assumption of a specific probability distribution. This generic metamodel was applied on a case study risk analysis of a road tunnel and showed high accuracy. It was found that metamodel uncertainty and inherent uncertainty have clear effects on the results of the risk analysis, which makes their consideration important.
000893214 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000893214 536__ $$0G:(DE-Juel1)BMBF-13N13266$$aORPHEUS - Optimierung der Rauchableitung und Personenführung in U-Bahnhöfen: Experimente und Simulationen (BMBF-13N13266)$$cBMBF-13N13266$$x1
000893214 536__ $$0G:(DE-Juel1)jjsc27_20190501$$aPyrolysis Modeling (jjsc27_20190501)$$cjjsc27_20190501$$fPyrolysis Modeling$$x2
000893214 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893214 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b1$$eCorresponding author
000893214 7001_ $$0P:(DE-HGF)0$$aKnaust, Christian$$b2
000893214 7001_ $$0P:(DE-HGF)0$$aThöns, Sebastian$$b3
000893214 773__ $$0PERI:(DE-600)2841166-3$$a10.3390/safety7030050$$gVol. 7, no. 3, p. 50 -$$n3$$p50 -$$tSafety$$v7$$x2313-576X$$y2021
000893214 8564_ $$uhttps://juser.fz-juelich.de/record/893214/files/Invoice_MDPI_safety-1188102.pdf
000893214 8564_ $$uhttps://juser.fz-juelich.de/record/893214/files/safety-07-00050.pdf$$yOpenAccess
000893214 8767_ $$81188102$$92021-06-16$$d2021-08-09$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200170479
000893214 909CO $$ooai:juser.fz-juelich.de:893214$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000893214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b1$$kFZJ
000893214 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000893214 9141_ $$y2021
000893214 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000893214 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893214 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-08-29
000893214 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-29
000893214 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-29
000893214 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-29
000893214 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000893214 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893214 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-29
000893214 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-29
000893214 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000893214 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000893214 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000893214 980__ $$ajournal
000893214 980__ $$aVDB
000893214 980__ $$aUNRESTRICTED
000893214 980__ $$aI:(DE-Juel1)IAS-7-20180321
000893214 980__ $$aAPC
000893214 9801_ $$aAPC
000893214 9801_ $$aFullTexts