001     893214
005     20220930130319.0
024 7 _ |a 10.3390/safety7030050
|2 doi
024 7 _ |a 2128/28151
|2 Handle
024 7 _ |a altmetric:108086659
|2 altmetric
024 7 _ |a WOS:000701089200001
|2 WOS
037 _ _ |a FZJ-2021-02631
082 _ _ |a 610
100 1 _ |a Berchtold, Florian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Uncertainty Modelling in Metamodels for Fire Risk Analysis
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626172601_14697
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In risk-related research of fire safety engineering, metamodels are often applied to approximate the results of complex fire and evacuation simulations. This approximation may cause epistemic uncertainties, and the inherent uncertainties of evacuation simulations may lead to aleatory uncertainties. However, neither the epistemic ‘metamodel uncertainty’ nor the aleatory ‘inherent uncertainty’ have been included in the results of the metamodels for fire safety engineering. For this reason, this paper presents a metamodel that includes metamodel uncertainty and inherent uncertainty in the results of a risk analysis. This metamodel is based on moving least squares; the metamodel uncertainty is derived from the prediction interval. The inherent uncertainty is modelled with an original approach, directly using all replications of evacuation scenarios without the assumption of a specific probability distribution. This generic metamodel was applied on a case study risk analysis of a road tunnel and showed high accuracy. It was found that metamodel uncertainty and inherent uncertainty have clear effects on the results of the risk analysis, which makes their consideration important.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a ORPHEUS - Optimierung der Rauchableitung und Personenführung in U-Bahnhöfen: Experimente und Simulationen (BMBF-13N13266)
|0 G:(DE-Juel1)BMBF-13N13266
|c BMBF-13N13266
|x 1
536 _ _ |a Pyrolysis Modeling (jjsc27_20190501)
|0 G:(DE-Juel1)jjsc27_20190501
|c jjsc27_20190501
|f Pyrolysis Modeling
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 1
|e Corresponding author
700 1 _ |a Knaust, Christian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Thöns, Sebastian
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.3390/safety7030050
|g Vol. 7, no. 3, p. 50 -
|0 PERI:(DE-600)2841166-3
|n 3
|p 50 -
|t Safety
|v 7
|y 2021
|x 2313-576X
856 4 _ |u https://juser.fz-juelich.de/record/893214/files/Invoice_MDPI_safety-1188102.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/893214/files/safety-07-00050.pdf
909 C O |o oai:juser.fz-juelich.de:893214
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132044
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21