001     893908
005     20210810182031.0
024 7 _ |a 10.1149/1945-7111/abd830
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-6859
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2156-7395
|2 ISSN
024 7 _ |a 2128/28110
|2 Handle
024 7 _ |a WOS:000616613500001
|2 WOS
037 _ _ |a FZJ-2021-02920
082 _ _ |a 660
100 1 _ |a Jalalpoor, Daniel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The Impact of Antimony on the Performance of Antimony Doped Tin Oxide Supported Platinum for the Oxygen Reduction Reaction
260 _ _ |a Bristol
|c 2021
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626067403_23493
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Daniel Jalalpoor, Daniel Göhl, Paul Paciok, Marc Heggen, Johannes Knossalla, Ivan Radev, Volker Peinecke, Claudia Weidenthaler, Karl J. J. Mayrhofer, “The Impact of Antimony on the Performance of Antimony Doped Tin Oxide Supported Platinum for the Oxygen Reduction Reaction”, J. Electrochem. Soc. 168, (2021) 024502 https://doi.org/10.1149/1945-7111/abd830 Abstract:Antimony doped tin oxide (ATO) supported platinum nanoparticles are considered a more stable replacement for conventional carbon supported platinum materials for the oxygen reduction reaction. However, the interplay of antimony, tin and platinum and its impact on the catalytic activity and durability has only received minor attention. This is partly due to difficulties in the preparation of morphology- and surface-area-controlled antimony-doped tin oxide materials. The presented study sheds light onto catalyst–support interaction on a fundamental level, specifically between platinum as a catalyst and ATO as a support material. By using a previously described hard-templating method, a series of morphology controlled ATO support materials for platinum nanoparticles with different antimony doping concentrations were prepared. Compositional and morphological changes before and during accelerated stress tests are monitored, and underlying principles of deactivation, dissolution and catalytic performance are elaborated. We demonstrate that mobilized antimony species and strong metal support interactions lead to Pt/Sb alloy formation as well as partially blocking of active sites. This has adverse consequences on the accessible platinum surface area, and affects negatively the catalytic performance of platinum. Operando time-resolved dissolution experiments uncover the potential boundary conditions at which antimony dissolution can be effectively suppressed and how platinum influences the dissolution behavior of the support.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Göhl, Daniel
|0 0000-0003-3636-8870
|b 1
700 1 _ |a Paciok, Paul
|0 P:(DE-Juel1)151296
|b 2
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 3
700 1 _ |a Knossalla, Johannes
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Radev, Ivan
|0 0000-0002-3895-6871
|b 5
700 1 _ |a Peinecke, Volker
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Weidenthaler, Claudia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mayrhofer, Karl J. J.
|0 P:(DE-Juel1)168125
|b 8
|e Corresponding author
700 1 _ |a Ledendecker, Marc
|0 0000-0003-3740-401X
|b 9
700 1 _ |a Schüth, Ferdi
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1149/1945-7111/abd830
|g Vol. 168, no. 2, p. 024502 -
|0 PERI:(DE-600)2002179-3
|n 2
|p 024502 -
|t Journal of the Electrochemical Society
|v 168
|y 2021
|x 1945-7111
856 4 _ |u https://juser.fz-juelich.de/record/893908/files/Jalalpoor_2021_J._Electrochem._Soc._168_024502.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893908
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)168125
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21