Journal Article FZJ-2021-02920

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The Impact of Antimony on the Performance of Antimony Doped Tin Oxide Supported Platinum for the Oxygen Reduction Reaction

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
IOP Publishing Bristol

Journal of the Electrochemical Society 168(2), 024502 - () [10.1149/1945-7111/abd830]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Daniel Jalalpoor, Daniel Göhl, Paul Paciok, Marc Heggen, Johannes Knossalla, Ivan Radev, Volker Peinecke, Claudia Weidenthaler, Karl J. J. Mayrhofer, “The Impact of Antimony on the Performance of Antimony Doped Tin Oxide Supported Platinum for the Oxygen Reduction Reaction”, J. Electrochem. Soc. 168, (2021) 024502 https://doi.org/10.1149/1945-7111/abd830 Abstract:Antimony doped tin oxide (ATO) supported platinum nanoparticles are considered a more stable replacement for conventional carbon supported platinum materials for the oxygen reduction reaction. However, the interplay of antimony, tin and platinum and its impact on the catalytic activity and durability has only received minor attention. This is partly due to difficulties in the preparation of morphology- and surface-area-controlled antimony-doped tin oxide materials. The presented study sheds light onto catalyst–support interaction on a fundamental level, specifically between platinum as a catalyst and ATO as a support material. By using a previously described hard-templating method, a series of morphology controlled ATO support materials for platinum nanoparticles with different antimony doping concentrations were prepared. Compositional and morphological changes before and during accelerated stress tests are monitored, and underlying principles of deactivation, dissolution and catalytic performance are elaborated. We demonstrate that mobilized antimony species and strong metal support interactions lead to Pt/Sb alloy formation as well as partially blocking of active sites. This has adverse consequences on the accessible platinum surface area, and affects negatively the catalytic performance of platinum. Operando time-resolved dissolution experiments uncover the potential boundary conditions at which antimony dissolution can be effectively suppressed and how platinum influences the dissolution behavior of the support.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) (POF4-535)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-07-07, last modified 2021-08-10


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)