000893938 001__ 893938
000893938 005__ 20240712100851.0
000893938 0247_ $$2doi$$a10.5194/acp-21-10249-2021
000893938 0247_ $$2ISSN$$a1680-7316
000893938 0247_ $$2ISSN$$a1680-7324
000893938 0247_ $$2Handle$$a2128/28133
000893938 0247_ $$2altmetric$$aaltmetric:108911484
000893938 0247_ $$2WOS$$aWOS:000671766300007
000893938 037__ $$aFZJ-2021-02944
000893938 082__ $$a550
000893938 1001_ $$0P:(DE-Juel1)169740$$aKrasauskas, Lukas$$b0$$eCorresponding author
000893938 245__ $$a3-D tomographic observations of Rossby wave breaking over the North Atlantic during the WISE aircraft campaign in 2017
000893938 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000893938 3367_ $$2DRIVER$$aarticle
000893938 3367_ $$2DataCite$$aOutput Types/Journal article
000893938 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669887889_19495
000893938 3367_ $$2BibTeX$$aARTICLE
000893938 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893938 3367_ $$00$$2EndNote$$aJournal Article
000893938 520__ $$aThis paper presents measurements of ozone, water vapour and nitric acid (HNO3) in the upper troposphere/lower stratosphere (UTLS) over North Atlantic and Europe. The measurements were acquired with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) during the Wave Driven Isentropic Exchange (WISE) campaign in October 2017. GLORIA is an airborne limb imager capable of acquiring both 2-D data sets (curtains along the flight path) and, when the carrier aircraft is flying around the observed air mass, spatially highly resolved 3-D tomographic data. Here, we present a case study of a Rossby wave (RW) breaking event observed during two subsequent flights 2 d apart. RW breaking is known to steepen tracer gradients and facilitate stratosphere–troposphere exchange (STE). Our measurements reveal complex spatial structures in stratospheric tracers (ozone and nitric acid) with multiple vertically stacked filaments. Backward-trajectory analysis is used to demonstrate that these features are related to several previous Rossby wave breaking events and that the small-scale structure of the UTLS in the Rossby wave breaking region, which is otherwise very hard to observe, can be understood as stirring and mixing of air masses of tropospheric and stratospheric origin. It is also shown that a strong nitric acid enhancement observed just above the tropopause is likely a result of NOx production by lightning activity. The measurements showed signatures of enhanced mixing between stratospheric and tropospheric air near the polar jet with some transport of water vapour into the stratosphere. Some of the air masses seen in 3-D data were encountered again 2 d later, stretched to very thin filament (horizontal thickness down to 30 km at some altitudes) rich in stratospheric tracers. This repeated measurement allowed us to directly observe and analyse the progress of mixing processes in a thin filament over 2 d. Our results provide direct insight into small-scale dynamics of the UTLS in the Rossby wave breaking region, which is of great importance to understanding STE and poleward transport in the UTLS.
000893938 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000893938 536__ $$0G:(DE-HGF)POF4-2A3$$a2A3 - Remote Sensing  (CARF - CCA) (POF4-2A3)$$cPOF4-2A3$$fPOF IV$$x1
000893938 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893938 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b1
000893938 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b2
000893938 7001_ $$00000-0003-2016-2800$$aFriedl-Vallon, Felix$$b3
000893938 7001_ $$0P:(DE-HGF)0$$aZahn, Andreas$$b4
000893938 7001_ $$00000-0001-5483-5669$$aZiereis, Helmut$$b5
000893938 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b6
000893938 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b7
000893938 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b8
000893938 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b9
000893938 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b10
000893938 770__ $$aWISE: Wave-driven isentropic exchange in the extratropical upper troposphere and lower stratosphere
000893938 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-10249-2021$$gVol. 21, no. 13, p. 10249 - 10272$$n13$$p10249 - 10272$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000893938 8564_ $$uhttps://juser.fz-juelich.de/record/893938/files/acp-21-10249-2021.pdf$$yOpenAccess
000893938 8767_ $$8101523$$92021-07-08$$d2021-08-10$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200170536
000893938 909CO $$ooai:juser.fz-juelich.de:893938$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000893938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169740$$aForschungszentrum Jülich$$b0$$kFZJ
000893938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b1$$kFZJ
000893938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b2$$kFZJ
000893938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b6$$kFZJ
000893938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b7$$kFZJ
000893938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b8$$kFZJ
000893938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b9$$kFZJ
000893938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b10$$kFZJ
000893938 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000893938 9131_ $$0G:(DE-HGF)POF4-2A3$$1G:(DE-HGF)POF4-2A0$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lCOOPERATION ACROSS RESEARCH FIELDS (CARFs)$$vRemote Sensing  (CARF - CCA)$$x1
000893938 9141_ $$y2021
000893938 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893938 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893938 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893938 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893938 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893938 920__ $$lyes
000893938 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000893938 9801_ $$aAPC
000893938 9801_ $$aFullTexts
000893938 980__ $$ajournal
000893938 980__ $$aVDB
000893938 980__ $$aI:(DE-Juel1)IEK-7-20101013
000893938 980__ $$aAPC
000893938 980__ $$aUNRESTRICTED
000893938 981__ $$aI:(DE-Juel1)ICE-4-20101013