000894085 001__ 894085
000894085 005__ 20240313094850.0
000894085 037__ $$aFZJ-2021-03031
000894085 041__ $$aEnglish
000894085 1001_ $$0P:(DE-Juel1)186828$$aFahad, Muhammad$$b0$$eCorresponding author$$ufzj
000894085 1112_ $$aNEST Conference 2021$$cVirtual$$d2021-06-28 - 2021-06-29$$wVirtual
000894085 245__ $$aMultiscale Brain Co-simulation in the Human Brain Project: EBRAINS tools for in-transit simulation and analysis
000894085 260__ $$c2021
000894085 3367_ $$033$$2EndNote$$aConference Paper
000894085 3367_ $$2DataCite$$aOther
000894085 3367_ $$2BibTeX$$aINPROCEEDINGS
000894085 3367_ $$2DRIVER$$aconferenceObject
000894085 3367_ $$2ORCID$$aLECTURE_SPEECH
000894085 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1626764100_26938$$xStandard
000894085 520__ $$aAn important capability build by The Human Brain Project (HBP) is brain simulations of large- and multiscale experimental and clinical data sets with integrated analysis toolkits. This results in workflows with multiple components to be run in parallel and in coordination with each. How to develop an end-user friendly production system capable of running these workflows is an open question, and introduces several scientific, engineering, and execution challenges: Parallel execution in a distributed environment. Data-flow and transformation between different scales, as well as error propagation related to the model complexity. Tolerance to network isolation/failure, the identification of communication/computation bottlenecks, and the growing probability of the fault condition as a multiplicative function of the number of applications in a workflow and their individual failure probabilities. To address these challenges, the multi-scale co-simulation framework, based on the Modular Science approach, connects at runtime the needed simulation engines, analysis tools and visualization engines. The Modular Science runtime execution system augments the science functionality with engineering and deployment functionality providing a handle on the complexity of the system. This talk will introduce the multi-scale co-simulation framework and the Modular Science approach to address the challenges with a focus on two-driving use-cases containing a NEST model. Firstly, a TVB and NEST co-simulation with dedicated transformation modules connecting a spiking network with a neural mass model. The second use-case is a co-simulation setup connecting NEST to the multi-agent simulation environment NetLogo, where a small point neuron network simulation controls agents interacting in a simple world.
000894085 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000894085 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x1
000894085 536__ $$0G:(EU-Grant)800858$$aICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)$$c800858$$fH2020-SGA-INFRA-FETFLAG-HBP$$x2
000894085 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000894085 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x4
000894085 7001_ $$0P:(DE-Juel1)168169$$aKlijn, Wouter$$b1$$ufzj
000894085 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b2$$ufzj
000894085 7001_ $$0P:(DE-Juel1)164507$$aSontheimer, Kim$$b3$$ufzj
000894085 7001_ $$0P:(DE-Juel1)185952$$aIngles Chavez, Rolando$$b4$$ufzj
000894085 7001_ $$0P:(DE-Juel1)184894$$aJimenez-Romero, Cristian$$b5$$ufzj
000894085 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen Martin$$b6$$ufzj
000894085 7001_ $$0P:(DE-Juel1)188270$$aOden, Lena$$b7$$ufzj
000894085 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b8$$ufzj
000894085 909CO $$ooai:juser.fz-juelich.de:894085$$pec_fundedresources$$pVDB$$popenaire
000894085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186828$$aForschungszentrum Jülich$$b0$$kFZJ
000894085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168169$$aForschungszentrum Jülich$$b1$$kFZJ
000894085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b2$$kFZJ
000894085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164507$$aForschungszentrum Jülich$$b3$$kFZJ
000894085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185952$$aForschungszentrum Jülich$$b4$$kFZJ
000894085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184894$$aForschungszentrum Jülich$$b5$$kFZJ
000894085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich$$b6$$kFZJ
000894085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188270$$aForschungszentrum Jülich$$b7$$kFZJ
000894085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b8$$kFZJ
000894085 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000894085 9141_ $$y2021
000894085 920__ $$lyes
000894085 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000894085 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000894085 980__ $$aconf
000894085 980__ $$aVDB
000894085 980__ $$aI:(DE-Juel1)JSC-20090406
000894085 980__ $$aI:(DE-Juel1)INM-6-20090406
000894085 980__ $$aUNRESTRICTED
000894085 981__ $$aI:(DE-Juel1)IAS-6-20130828