000894190 001__ 894190
000894190 005__ 20211025171506.0
000894190 0247_ $$2doi$$a10.3390/jcm10143079
000894190 0247_ $$2Handle$$a2128/28757
000894190 0247_ $$2pmid$$a34300246
000894190 0247_ $$2WOS$$aWOS:000676306200001
000894190 037__ $$aFZJ-2021-03081
000894190 082__ $$a610
000894190 1001_ $$0P:(DE-HGF)0$$aHeise, Daniel$$b0$$eCorresponding author
000894190 245__ $$aCT-Based Prediction of Liver Function and Post-PVE Hypertrophy Using an Artificial Neural Network
000894190 260__ $$aBasel$$bMDPI$$c2021
000894190 3367_ $$2DRIVER$$aarticle
000894190 3367_ $$2DataCite$$aOutput Types/Journal article
000894190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633956240_10602
000894190 3367_ $$2BibTeX$$aARTICLE
000894190 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894190 3367_ $$00$$2EndNote$$aJournal Article
000894190 520__ $$aBackground: This study aimed to evaluate whether hypertrophy after portal vein embolization (PVE) and maximum liver function capacity (LiMAx) are predictable by an artificial neural network (ANN) model based on computed tomography (CT) texture features.Methods: We report a retrospective analysis on 118 patients undergoing preoperative assessment by CT before and after PVE for subsequent extended liver resection due to a malignant tumor at RWTH Aachen University Hospital. The LiMAx test was carried out in a subgroup of 55 patients prior to PVE. Associations between CT texture features and hypertrophy as well as liver function were assessed by a multilayer perceptron ANN model.Results: Liver volumetry showed a median hypertrophy degree of 33.9% (16.5-60.4%) after PVE. Non-response, defined as a hypertrophy grade lower than 25%, was found in 36.5% (43/118) of the cases. The ANN prediction of the hypertrophy response showed a sensitivity of 95.8%, specificity of 44.4% and overall prediction accuracy of 74.6% (p < 0.001). The observed median LiMAx was 327 (248-433) μg/kg/h and was strongly correlated with the predicted LiMAx (R2 = 0.89).Conclusion: Our study shows that an ANN model based on CT texture features is able to predict the maximum liver function capacity and may be useful to assess potential hypertrophy after performing PVE.Keywords: artificial neural network; computed tomography; liver function; liver volume; portal vein embolization.
000894190 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000894190 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894190 7001_ $$00000-0002-9182-2688$$aSchulze-Hagen, Maximilian$$b1
000894190 7001_ $$0P:(DE-HGF)0$$aBednarsch, Jan$$b2
000894190 7001_ $$0P:(DE-HGF)0$$aEickhoff, Roman$$b3
000894190 7001_ $$0P:(DE-HGF)0$$aKroh, Andreas$$b4
000894190 7001_ $$0P:(DE-HGF)0$$aBruners, Philipp$$b5
000894190 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b6
000894190 7001_ $$00000-0001-9937-2602$$aBrecheisen, Ralph$$b7
000894190 7001_ $$0P:(DE-HGF)0$$aUlmer, Florian$$b8
000894190 7001_ $$0P:(DE-HGF)0$$aNeumann, Ulf Peter$$b9
000894190 773__ $$0PERI:(DE-600)2662592-1$$a10.3390/jcm10143079$$gVol. 10, no. 14, p. 3079 -$$n14$$p3079 -$$tJournal of Clinical Medicine$$v10$$x2077-0383$$y2021
000894190 8564_ $$uhttps://juser.fz-juelich.de/record/894190/files/Heise.D_.pdf$$yOpenAccess
000894190 8564_ $$uhttps://juser.fz-juelich.de/record/894190/files/jcm-10-03079.pdf$$yOpenAccess
000894190 909CO $$ooai:juser.fz-juelich.de:894190$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b6$$kFZJ
000894190 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000894190 9141_ $$y2021
000894190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000894190 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894190 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CLIN MED : 2019$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894190 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000894190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000894190 920__ $$lyes
000894190 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000894190 980__ $$ajournal
000894190 980__ $$aVDB
000894190 980__ $$aUNRESTRICTED
000894190 980__ $$aI:(DE-Juel1)INM-7-20090406
000894190 9801_ $$aFullTexts