Home > Publications database > CT-Based Prediction of Liver Function and Post-PVE Hypertrophy Using an Artificial Neural Network |
Journal Article | FZJ-2021-03081 |
; ; ; ; ; ; ; ; ;
2021
MDPI
Basel
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/28757 doi:10.3390/jcm10143079
Abstract: Background: This study aimed to evaluate whether hypertrophy after portal vein embolization (PVE) and maximum liver function capacity (LiMAx) are predictable by an artificial neural network (ANN) model based on computed tomography (CT) texture features.Methods: We report a retrospective analysis on 118 patients undergoing preoperative assessment by CT before and after PVE for subsequent extended liver resection due to a malignant tumor at RWTH Aachen University Hospital. The LiMAx test was carried out in a subgroup of 55 patients prior to PVE. Associations between CT texture features and hypertrophy as well as liver function were assessed by a multilayer perceptron ANN model.Results: Liver volumetry showed a median hypertrophy degree of 33.9% (16.5-60.4%) after PVE. Non-response, defined as a hypertrophy grade lower than 25%, was found in 36.5% (43/118) of the cases. The ANN prediction of the hypertrophy response showed a sensitivity of 95.8%, specificity of 44.4% and overall prediction accuracy of 74.6% (p < 0.001). The observed median LiMAx was 327 (248-433) μg/kg/h and was strongly correlated with the predicted LiMAx (R2 = 0.89).Conclusion: Our study shows that an ANN model based on CT texture features is able to predict the maximum liver function capacity and may be useful to assess potential hypertrophy after performing PVE.Keywords: artificial neural network; computed tomography; liver function; liver volume; portal vein embolization.
![]() |
The record appears in these collections: |