001     894190
005     20211025171506.0
024 7 _ |a 10.3390/jcm10143079
|2 doi
024 7 _ |a 2128/28757
|2 Handle
024 7 _ |a 34300246
|2 pmid
024 7 _ |a WOS:000676306200001
|2 WOS
037 _ _ |a FZJ-2021-03081
082 _ _ |a 610
100 1 _ |a Heise, Daniel
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a CT-Based Prediction of Liver Function and Post-PVE Hypertrophy Using an Artificial Neural Network
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1633956240_10602
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background: This study aimed to evaluate whether hypertrophy after portal vein embolization (PVE) and maximum liver function capacity (LiMAx) are predictable by an artificial neural network (ANN) model based on computed tomography (CT) texture features.Methods: We report a retrospective analysis on 118 patients undergoing preoperative assessment by CT before and after PVE for subsequent extended liver resection due to a malignant tumor at RWTH Aachen University Hospital. The LiMAx test was carried out in a subgroup of 55 patients prior to PVE. Associations between CT texture features and hypertrophy as well as liver function were assessed by a multilayer perceptron ANN model.Results: Liver volumetry showed a median hypertrophy degree of 33.9% (16.5-60.4%) after PVE. Non-response, defined as a hypertrophy grade lower than 25%, was found in 36.5% (43/118) of the cases. The ANN prediction of the hypertrophy response showed a sensitivity of 95.8%, specificity of 44.4% and overall prediction accuracy of 74.6% (p < 0.001). The observed median LiMAx was 327 (248-433) μg/kg/h and was strongly correlated with the predicted LiMAx (R2 = 0.89).Conclusion: Our study shows that an ANN model based on CT texture features is able to predict the maximum liver function capacity and may be useful to assess potential hypertrophy after performing PVE.Keywords: artificial neural network; computed tomography; liver function; liver volume; portal vein embolization.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schulze-Hagen, Maximilian
|0 0000-0002-9182-2688
|b 1
700 1 _ |a Bednarsch, Jan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Eickhoff, Roman
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kroh, Andreas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bruners, Philipp
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 6
700 1 _ |a Brecheisen, Ralph
|0 0000-0001-9937-2602
|b 7
700 1 _ |a Ulmer, Florian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Neumann, Ulf Peter
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.3390/jcm10143079
|g Vol. 10, no. 14, p. 3079 -
|0 PERI:(DE-600)2662592-1
|n 14
|p 3079 -
|t Journal of Clinical Medicine
|v 10
|y 2021
|x 2077-0383
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/894190/files/Heise.D_.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/894190/files/jcm-10-03079.pdf
909 C O |o oai:juser.fz-juelich.de:894190
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CLIN MED : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21