000894232 001__ 894232
000894232 005__ 20240712112830.0
000894232 0247_ $$2doi$$a10.5194/mr-2-265-2021
000894232 0247_ $$2Handle$$a2128/28408
000894232 0247_ $$2altmetric$$aaltmetric:105388050
000894232 037__ $$aFZJ-2021-03112
000894232 082__ $$a530
000894232 1001_ $$0P:(DE-Juel1)169518$$aJovanovic, Sven$$b0$$eCorresponding author
000894232 245__ $$aAn electrochemical cell for in operando <sup>13</sup>C nuclear magnetic resonance investigations of carbon dioxide/carbonate processes in aqueous solution
000894232 260__ $$aGöttingen$$bCopernicus Publications$$c2021
000894232 3367_ $$2DRIVER$$aarticle
000894232 3367_ $$2DataCite$$aOutput Types/Journal article
000894232 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1628079159_2107
000894232 3367_ $$2BibTeX$$aARTICLE
000894232 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894232 3367_ $$00$$2EndNote$$aJournal Article
000894232 520__ $$aIn operando nuclear magnetic resonance (NMR) spectroscopy is one method for the online investigation of electrochemical systems and reactions. It allows for real-time observations of the formation of products and intermediates, and it grants insights into the interactions of substrates and catalysts. An in operando NMR setup for the investigation of the electrolytic reduction of CO2 at silver electrodes has been developed. The electrolysis cell consists of a three-electrode setup using a working electrode of pristine silver, a chlorinated silver wire as the reference electrode, and a graphite counter electrode. The setup can be adjusted for the use of different electrode materials and fits inside a 5 mm NMR tube. Additionally, a shielding setup was employed to minimize noise caused by interference of external radio frequency (RF) waves with the conductive components of the setup. The electrochemical performance of the in operando electrolysis setup is compared with a standard CO2 electrolysis cell. The small cell geometry impedes the release of gaseous products, and thus it is primarily suited for current densities below 1 mA cm−2. The effect of conductive components on 13C NMR experiments was studied using a CO2-saturated solution of aqueous bicarbonate electrolyte. Despite the B0 field distortions caused by the electrodes, a proper shimming could be attained, and line widths of ca. 1 Hz were achieved. This enables investigations in the sub-Hertz range by NMR spectroscopy. High-resolution 13C NMR and relaxation time measurements proved to be sensitive to changes in the sample. It was found that the dynamics of the bicarbonate electrolyte varies not only due to interactions with the silver electrode, which leads to the formation of an electrical double layer and catalyzes the exchange reaction between CO2 and HCO−3, but also due to interactions with the electrochemical setup. This highlights the necessity of a step-by-step experiment design for a mechanistic understanding of processes occurring during electrochemical CO2 reduction.
000894232 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000894232 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894232 7001_ $$0P:(DE-Juel1)168465$$aSchleker, P. Philipp M.$$b1
000894232 7001_ $$0P:(DE-Juel1)133944$$aStreun, Matthias$$b2
000894232 7001_ $$0P:(DE-Juel1)129503$$aMerz, Steffen$$b3
000894232 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b4
000894232 7001_ $$0P:(DE-Juel1)165598$$aSchatz, Michael$$b5
000894232 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6
000894232 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b7
000894232 773__ $$0PERI:(DE-600)2998533-X$$a10.5194/mr-2-265-2021$$gVol. 2, no. 1, p. 265 - 280$$n1$$p265 - 280$$tMagnetic resonance$$v2$$x2699-0016$$y2021
000894232 8564_ $$uhttps://juser.fz-juelich.de/record/894232/files/Invoice_101453.pdf
000894232 8564_ $$uhttps://juser.fz-juelich.de/record/894232/files/mr-2-265-2021.pdf$$yOpenAccess
000894232 8767_ $$8101453$$92021-06-16$$d2021-08-13$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200170623
000894232 909CO $$ooai:juser.fz-juelich.de:894232$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000894232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169518$$aForschungszentrum Jülich$$b0$$kFZJ
000894232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b1$$kFZJ
000894232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b2$$kFZJ
000894232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129503$$aForschungszentrum Jülich$$b3$$kFZJ
000894232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b4$$kFZJ
000894232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165598$$aForschungszentrum Jülich$$b5$$kFZJ
000894232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
000894232 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
000894232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b7$$kFZJ
000894232 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b7$$kRWTH
000894232 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000894232 9141_ $$y2021
000894232 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894232 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894232 920__ $$lyes
000894232 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000894232 9801_ $$aAPC
000894232 9801_ $$aFullTexts
000894232 980__ $$ajournal
000894232 980__ $$aVDB
000894232 980__ $$aUNRESTRICTED
000894232 980__ $$aI:(DE-Juel1)IEK-9-20110218
000894232 980__ $$aAPC
000894232 981__ $$aI:(DE-Juel1)IET-1-20110218