000894233 001__ 894233
000894233 005__ 20240711101522.0
000894233 0247_ $$2doi$$a10.3390/en14113166
000894233 0247_ $$2Handle$$a2128/28372
000894233 0247_ $$2WOS$$aWOS:000659811900001
000894233 037__ $$aFZJ-2021-03113
000894233 082__ $$a620
000894233 1001_ $$0P:(DE-Juel1)168335$$aReuß, Markus$$b0
000894233 245__ $$aHydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050
000894233 260__ $$aBasel$$bMDPI$$c2021
000894233 3367_ $$2DRIVER$$aarticle
000894233 3367_ $$2DataCite$$aOutput Types/Journal article
000894233 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627645466_23339
000894233 3367_ $$2BibTeX$$aARTICLE
000894233 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894233 3367_ $$00$$2EndNote$$aJournal Article
000894233 520__ $$aCarbon-free transportation is envisaged by means of fuel cell electric vehicles (FCEV) propelled by hydrogen that originates from renewably electricity. However, there is a spatial and temporal gap in the production and demand of hydrogen. Therefore, hydrogen storage and transport remain key challenges for sustainable transportation with FCEVs. In this study, we propose a method for calculating a spatially resolved highway routing model for Germany to transport hydrogen by truck from the 15 production locations (source) to the 9683 fueling stations (sink) required by 2050. We consider herein three different storage modes, namely compressed gaseous hydrogen (CGH2), liquid hydrogen (LH2) and liquid organic hydrogen carriers (LOHC). The model applies Dijkstra’s shortest path algorithm for all available source-sink connections prior to optimizing the supply. By creating a detailed routing result for each source-sink connection, a detour factor is introduced for “first and last mile” transportation. The average detour factor of 1.32 is shown to be necessary for the German highway grid. Thereafter, the related costs, transportation time and travelled distances are calculated and compared for the examined storage modes. The overall transportation cost result for compressed gaseous hydrogen is 2.69 €/kgH2, 0.73 €/kgH2 for liquid hydrogen, and 0.99 €/kgH2 for LOHCs. While liquid hydrogen appears to be the most cost-efficient mode, with the integration of the supply chain costs, compressed gaseous hydrogen is more convenient for minimal source-sink distances, while liquid hydrogen would be suitable for distances greater than 130 km.
000894233 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000894233 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000894233 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894233 7001_ $$0P:(DE-HGF)0$$aDimos, Paris$$b1
000894233 7001_ $$0P:(DE-HGF)0$$aLéon, Aline$$b2
000894233 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b3$$eCorresponding author
000894233 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b4
000894233 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b5
000894233 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en14113166$$gVol. 14, no. 11, p. 3166 -$$n11$$p3166 -$$tEnergies$$v14$$x1996-1073$$y2021
000894233 8564_ $$uhttps://juser.fz-juelich.de/record/894233/files/Invoice_101453.pdf
000894233 8564_ $$uhttps://juser.fz-juelich.de/record/894233/files/energies-14-03166-v2.pdf$$yOpenAccess
000894233 8767_ $$8101453$$92021-06-16$$d2021-08-13$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200170623
000894233 909CO $$ooai:juser.fz-juelich.de:894233$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000894233 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b3$$kFZJ
000894233 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000894233 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b5$$kRWTH
000894233 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000894233 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000894233 9141_ $$y2021
000894233 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-05-04
000894233 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894233 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2019$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894233 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000894233 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000894233 920__ $$lyes
000894233 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000894233 9801_ $$aAPC
000894233 9801_ $$aFullTexts
000894233 980__ $$ajournal
000894233 980__ $$aVDB
000894233 980__ $$aUNRESTRICTED
000894233 980__ $$aI:(DE-Juel1)IEK-3-20101013
000894233 980__ $$aAPC
000894233 981__ $$aI:(DE-Juel1)ICE-2-20101013