000894261 001__ 894261
000894261 005__ 20240711085642.0
000894261 0247_ $$2doi$$a10.1111/ijac.13829
000894261 0247_ $$2ISSN$$a1546-542X
000894261 0247_ $$2ISSN$$a1744-7402
000894261 0247_ $$2WOS$$aWOS:000677874500001
000894261 0247_ $$2Handle$$a2128/31290
000894261 037__ $$aFZJ-2021-03136
000894261 082__ $$a670
000894261 1001_ $$0P:(DE-Juel1)173939$$aWolf, Markus$$b0
000894261 245__ $$aCrystalline ytterbium disilicate environmental barrier coatings made by high velocity oxygen fuel spraying
000894261 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2022
000894261 3367_ $$2DRIVER$$aarticle
000894261 3367_ $$2DataCite$$aOutput Types/Journal article
000894261 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655190149_23411
000894261 3367_ $$2BibTeX$$aARTICLE
000894261 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894261 3367_ $$00$$2EndNote$$aJournal Article
000894261 520__ $$aDense environmental barrier coatings (EBCs) are an essential prerequisite to exploit the advantages offered by SiC-based fiber reinforced ceramic matrix composites (CMCs) to increase efficiency in gas turbines. Today's state-of-the art materials for application as EBCs are rare-earth (RE) silicates which, however, form amorphous phases upon rapid quenching from the melt. This makes their processing by thermal spray a challenge. Recently, high velocity oxygen fuel (HVOF) spraying was proposed as potential solution since the melting degree of the feedstock can be controlled effectively. This work studies the deposition of ytterbium disilicate (YbDS) at short stand-off distances and variant total feed rates and oxy-fuel ratios of the working gas. It was found that the overall degree of crystallinity could be kept at high level above 90%. The kinetic energy transferred by impinging particles was found to be an effective parameter to control the densification of the coatings. Porosities well below 10% were achieved while fully dense coatings were impeded due to the progressive accumulation of stresses in the coatings.
000894261 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000894261 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894261 7001_ $$0P:(DE-Juel1)129630$$aMack, Daniel Emil$$b1$$eCorresponding author
000894261 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b2
000894261 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3
000894261 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b4
000894261 773__ $$0PERI:(DE-600)2167226-X$$a10.1111/ijac.13829$$gp. ijac.13829$$n1$$p210-220$$tInternational journal of applied ceramic technology$$v19$$x1744-7402$$y2022
000894261 8564_ $$uhttps://juser.fz-juelich.de/record/894261/files/Int%20J%20Applied%20Ceramic%20Tech%20-%202021%20-%20Wolf%20-%20Crystalline%20ytterbium%20disilicate%20environmental%20barrier%20coatings%20made%20by%20high.pdf$$yOpenAccess
000894261 8767_ $$d2022-07-13$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000894261 909CO $$ooai:juser.fz-juelich.de:894261$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000894261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173939$$aForschungszentrum Jülich$$b0$$kFZJ
000894261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich$$b1$$kFZJ
000894261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b2$$kFZJ
000894261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000894261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b4$$kFZJ
000894261 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000894261 9141_ $$y2021
000894261 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-31$$wger
000894261 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000894261 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894261 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000894261 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000894261 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000894261 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-11
000894261 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000894261 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J APPL CERAM TEC : 2021$$d2022-11-11
000894261 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000894261 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000894261 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000894261 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000894261 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000894261 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000894261 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000894261 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000894261 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000894261 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000894261 9801_ $$aAPC
000894261 9801_ $$aFullTexts
000894261 980__ $$ajournal
000894261 980__ $$aVDB
000894261 980__ $$aUNRESTRICTED
000894261 980__ $$aI:(DE-Juel1)IEK-1-20101013
000894261 980__ $$aI:(DE-82)080011_20140620
000894261 980__ $$aAPC
000894261 981__ $$aI:(DE-Juel1)IMD-2-20101013