Home > Publications database > Microaerobic growth‐decoupled production of α‐ketoglutarate and succinate from xylose in a one‐pot process using Corynebacterium glutamicum > print |
001 | 894460 | ||
005 | 20230303201752.0 | ||
024 | 7 | _ | |a 10.1002/biot.202100043 |2 doi |
024 | 7 | _ | |a 1860-6768 |2 ISSN |
024 | 7 | _ | |a 1860-7314 |2 ISSN |
024 | 7 | _ | |a 2128/28622 |2 Handle |
024 | 7 | _ | |a 34089621 |2 pmid |
024 | 7 | _ | |a WOS:000662896100001 |2 WOS |
037 | _ | _ | |a FZJ-2021-03236 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Tenhaef, Niklas |0 P:(DE-Juel1)168172 |b 0 |
245 | _ | _ | |a Microaerobic growth‐decoupled production of α‐ketoglutarate and succinate from xylose in a one‐pot process using Corynebacterium glutamicum |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1631518810_22188 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Biotechnologie 1 |
520 | _ | _ | |a BackgroundLignocellulosic biomass is the most abundant raw material on earth. Its efficient use for novel bio-based materials is essential for an emerging bioeconomy. Possible building blocks for such materials are the key TCA-cycle intermediates α-ketoglutarate and succinate. These organic acids have a wide range of potential applications, particularly in use as monomers for established or novel biopolymers. Recently, Corynebacterium glutamicum was successfully engineered and evolved towards an improved utilization of d-xylose via the Weimberg pathway, yielding the strain WMB2evo. The Weimberg pathway enables a carbon-efficient C5-to-C5 conversion of d-xylose to α-ketoglutarate and a shortcut route to succinate as co-product in a one-pot process.Methods and ResultsC. glutamicum WMB2evo was grown under dynamic microaerobic conditions on d-xylose, leading to the formation of comparably high amounts of succinate and only small amounts of α-ketoglutarate. Subsequent carbon isotope labeling experiments verified the targeted production route for both products in C. glutamicum WMB2evo. Fed-batch process development was initiated and the effect of oxygen supply and feeding strategy for a growth-decoupled co-production of α-ketoglutarate and succinate were studied in detail. The finally established fed-batch production process resulted in the formation of 78.4 mmol L−1 (11.45 g L−1) α-ketoglutarate and 96.2 mmol L−1 (11.36 g L−1) succinate.ConclusionThe developed one-pot process represents a promising approach for the combined supply of bio-based α-ketoglutarate and succinate. Future work will focus on tailor-made down-stream processing of both organic acids from the fermentation broth to enable their application as building blocks in chemical syntheses. Alternatively, direct conversion of one or both acids via whole-cell or cell-free enzymatic approaches can be envisioned; thus, extending the network of value chains starting from cheap and renewable d-xylose.AbstractThe Weimberg pathway enables a carbon-efficient C5-to-C5 conversion of xylose to α-ketoglutarate and a shortcut route to succinate as established platform chemical. In this study, we employed the recently engineered and evolved strain C. glutamicum WMB2evo to establish a one-pot cultivation process for co-production of α-ketoglutarate and succinate from xylose. |
536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Kappelmann, Jannick |0 P:(DE-Juel1)161539 |b 1 |
700 | 1 | _ | |a Eich, Arabel |0 P:(DE-Juel1)173876 |b 2 |
700 | 1 | _ | |a Weiske, Marc |0 P:(DE-Juel1)173753 |b 3 |
700 | 1 | _ | |a Brieß, Lisette |0 P:(DE-Juel1)176823 |b 4 |
700 | 1 | _ | |a Brüsseler, Christian |0 P:(DE-Juel1)166290 |b 5 |
700 | 1 | _ | |a Marienhagen, Jan |0 P:(DE-Juel1)144031 |b 6 |
700 | 1 | _ | |a Wiechert, Wolfgang |0 P:(DE-Juel1)129076 |b 7 |
700 | 1 | _ | |a Noack, Stephan |0 P:(DE-Juel1)129050 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1002/biot.202100043 |g p. 2100043 - |0 PERI:(DE-600)2214038-4 |n 9 |p 2100043 - |t Biotechnology journal |v 16 |y 2021 |x 1860-7314 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/894460/files/Tenhaef%20et%20al%202021%20Biotechnol%20J%20online.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:894460 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |q OpenAPC |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168172 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)144031 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129076 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)129050 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BIOTECHNOL J : 2019 |d 2021-02-04 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-04 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|