Journal Article FZJ-2021-03236

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Microaerobic growth‐decoupled production of α‐ketoglutarate and succinate from xylose in a one‐pot process using Corynebacterium glutamicum

 ;  ;  ;  ;  ;  ;  ;  ;

2021
Wiley-VCH Weinheim

Biotechnology journal 16(9), 2100043 - () [10.1002/biot.202100043]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: BackgroundLignocellulosic biomass is the most abundant raw material on earth. Its efficient use for novel bio-based materials is essential for an emerging bioeconomy. Possible building blocks for such materials are the key TCA-cycle intermediates α-ketoglutarate and succinate. These organic acids have a wide range of potential applications, particularly in use as monomers for established or novel biopolymers. Recently, Corynebacterium glutamicum was successfully engineered and evolved towards an improved utilization of d-xylose via the Weimberg pathway, yielding the strain WMB2evo. The Weimberg pathway enables a carbon-efficient C5-to-C5 conversion of d-xylose to α-ketoglutarate and a shortcut route to succinate as co-product in a one-pot process.Methods and ResultsC. glutamicum WMB2evo was grown under dynamic microaerobic conditions on d-xylose, leading to the formation of comparably high amounts of succinate and only small amounts of α-ketoglutarate. Subsequent carbon isotope labeling experiments verified the targeted production route for both products in C. glutamicum WMB2evo. Fed-batch process development was initiated and the effect of oxygen supply and feeding strategy for a growth-decoupled co-production of α-ketoglutarate and succinate were studied in detail. The finally established fed-batch production process resulted in the formation of 78.4 mmol L−1 (11.45 g L−1) α-ketoglutarate and 96.2 mmol L−1 (11.36 g L−1) succinate.ConclusionThe developed one-pot process represents a promising approach for the combined supply of bio-based α-ketoglutarate and succinate. Future work will focus on tailor-made down-stream processing of both organic acids from the fermentation broth to enable their application as building blocks in chemical syntheses. Alternatively, direct conversion of one or both acids via whole-cell or cell-free enzymatic approaches can be envisioned; thus, extending the network of value chains starting from cheap and renewable d-xylose.AbstractThe Weimberg pathway enables a carbon-efficient C5-to-C5 conversion of xylose to α-ketoglutarate and a shortcut route to succinate as established platform chemical. In this study, we employed the recently engineered and evolved strain C. glutamicum WMB2evo to establish a one-pot cultivation process for co-production of α-ketoglutarate and succinate from xylose.

Classification:

Note: Biotechnologie 1

Contributing Institute(s):
  1. Biotechnologie (IBG-1)
Research Program(s):
  1. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DEAL Wiley ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-1
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2021-08-12, last modified 2023-03-03


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)