000894764 001__ 894764
000894764 005__ 20210912010930.0
000894764 0247_ $$2doi$$a10.1101/2021.06.30.450546
000894764 0247_ $$2Handle$$a2128/28597
000894764 0247_ $$2altmetric$$aaltmetric:108487241
000894764 037__ $$aFZJ-2021-03378
000894764 1001_ $$0P:(DE-Juel1)178687$$aHelleckes, Laura Marie$$b0
000894764 245__ $$aBayesian calibration, process modeling and uncertainty quantification in biotechnology
000894764 260__ $$c2021
000894764 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1630997314_29782
000894764 3367_ $$2ORCID$$aWORKING_PAPER
000894764 3367_ $$028$$2EndNote$$aElectronic Article
000894764 3367_ $$2DRIVER$$apreprint
000894764 3367_ $$2BibTeX$$aARTICLE
000894764 3367_ $$2DataCite$$aOutput Types/Working Paper
000894764 520__ $$aHigh-throughput experimentation has revolutionized data-driven experimental sciences and opened the door to the application of machine learning techniques. Nevertheless, the quality of any data analysis strongly depends on the quality of the data and specifically the degree to which random effects in the experimental data-generating process are quantified and accounted for. Accordingly calibration, i.e. the quantitative association between observed quantities with measurement responses, is a core element of many workflows in experimental sciences. Particularly in life sciences, univariate calibration, often involving non-linear saturation effects, must be performed to extract quantitative information from measured data. At the same time, the estimation of uncertainty is inseparably connected to quantitative experimentation. Adequate calibration models that describe not only the input/output relationship in a measurement system, but also its inherent measurement noise are required. Due to its mathematical nature, statistically robust calibration modeling remains a challenge for many practitioners, at the same time being extremely beneficial for machine learning applications. In this work, we present a bottom-up conceptual and computational approach that solves many problems of understanding and implementing non-linear, empirical calibration modeling for quantification of analytes and process modeling. The methodology is first applied to the optical measurement of biomass concentrations in a high-throughput cultivation system, then to the quantification of glucose by an automated enzymatic assay. We implemented the conceptual framework in two Python packages, with which we demonstrate how it makes uncertainty quantification for various calibration tasks more accessible. Our software packages enable more reproducible and automatable data analysis routines compared to commonly observed workflows in life sciences. Subsequently, we combine the previously established calibration models with a hierarchical Monod-like differential equation model of microbial growth to describe multiple replicates of Corynebacterium glutamicum batch microbioreactor cultures. Key process model parameters are learned by both maximum likelihood estimation and Bayesian inference, highlighting the flexibility of the statistical and computational framework.
000894764 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000894764 588__ $$aDataset connected to CrossRef
000894764 7001_ $$0P:(DE-Juel1)174594$$aOsthege, Michael$$b1
000894764 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b2
000894764 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b3
000894764 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b4$$eCorresponding author
000894764 773__ $$a10.1101/2021.06.30.450546
000894764 8564_ $$uhttps://juser.fz-juelich.de/record/894764/files/2021.06.30.450546.full.pdf$$yOpenAccess
000894764 909CO $$ooai:juser.fz-juelich.de:894764$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178687$$aForschungszentrum Jülich$$b0$$kFZJ
000894764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174594$$aForschungszentrum Jülich$$b1$$kFZJ
000894764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b2$$kFZJ
000894764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b3$$kFZJ
000894764 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b4$$kFZJ
000894764 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000894764 9141_ $$y2021
000894764 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894764 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894764 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000894764 9801_ $$aFullTexts
000894764 980__ $$apreprint
000894764 980__ $$aVDB
000894764 980__ $$aUNRESTRICTED
000894764 980__ $$aI:(DE-Juel1)IBG-1-20101118