000894769 001__ 894769
000894769 005__ 20230815122843.0
000894769 0247_ $$2doi$$a10.1021/acsnano.1c04766
000894769 0247_ $$2ISSN$$a1936-0851
000894769 0247_ $$2ISSN$$a1936-086X
000894769 0247_ $$2Handle$$a2128/28789
000894769 0247_ $$2altmetric$$aaltmetric:112786791
000894769 0247_ $$2pmid$$a34472336
000894769 0247_ $$2WOS$$aWOS:000703553600074
000894769 037__ $$aFZJ-2021-03383
000894769 082__ $$a540
000894769 1001_ $$0P:(DE-HGF)0$$aFujii, Jun$$b0
000894769 245__ $$aMitrofanovite Pt 3 Te 4 : A Topological Metal with Termination-Dependent Surface Band Structure and Strong Spin Polarization
000894769 260__ $$aWashington, DC$$bSoc.$$c2021
000894769 3367_ $$2DRIVER$$aarticle
000894769 3367_ $$2DataCite$$aOutput Types/Journal article
000894769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634192925_4064
000894769 3367_ $$2BibTeX$$aARTICLE
000894769 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000894769 3367_ $$00$$2EndNote$$aJournal Article
000894769 520__ $$aDue to their peculiar quasiparticle excitations, topological metals have high potential for applications in the fields of spintronics, catalysis, and superconductivity. Here, by combining spin- and angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory, we discover surface-termination-dependent topological electronic states in the recently discovered mitrofanovite Pt3Te4. Mitrofanovite crystal is formed by alternating, van der Waals bound layers of Pt2Te2 and PtTe2. Our results demonstrate that mitrofanovite is a topological metal with termination-dependent (i) electronic band structure and (ii) spin texture. Despite their distinct electronic character, both surface terminations are characterized by electronic states exhibiting strong spin polarization with a node at the Γ point and sign reversal across the Γ point, indicating their topological nature and the possibility of realizing two distinct electronic configurations (both of them with topological features) on the surface of the same material.
000894769 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000894769 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1
000894769 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000894769 7001_ $$0P:(DE-HGF)0$$aGhosh, Barun$$b1
000894769 7001_ $$0P:(DE-HGF)0$$aVobornik, Ivana$$b2$$eCorresponding author
000894769 7001_ $$0P:(DE-HGF)0$$aBari Sarkar, Anan$$b3
000894769 7001_ $$0P:(DE-HGF)0$$aMondal, Debashis$$b4
000894769 7001_ $$0P:(DE-HGF)0$$aKuo, Chia-Nung$$b5
000894769 7001_ $$0P:(DE-Juel1)167128$$aBocquet, François C.$$b6
000894769 7001_ $$00000-0003-3430-4988$$aZhang, Lixue$$b7
000894769 7001_ $$00000-0002-2286-3443$$aBoukhvalov, Danil W.$$b8
000894769 7001_ $$aLue, Chin Shan$$b9
000894769 7001_ $$0P:(DE-HGF)0$$aAgarwal, Amit$$b10$$eCorresponding author
000894769 7001_ $$0P:(DE-HGF)0$$aPolitano, Antonio$$b11$$eCorresponding author
000894769 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.1c04766$$gp. acsnano.1c04766$$n9$$p14786–14793$$tACS nano$$v15$$x1936-086X$$y2021
000894769 8564_ $$uhttps://juser.fz-juelich.de/record/894769/files/acsnano.1c04766.pdf$$yOpenAccess
000894769 909CO $$ooai:juser.fz-juelich.de:894769$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000894769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b6$$kFZJ
000894769 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000894769 9141_ $$y2021
000894769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000894769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000894769 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000894769 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000894769 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000894769 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2019$$d2021-01-29
000894769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000894769 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000894769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2019$$d2021-01-29
000894769 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000894769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000894769 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000894769 980__ $$ajournal
000894769 980__ $$aVDB
000894769 980__ $$aUNRESTRICTED
000894769 980__ $$aI:(DE-Juel1)PGI-3-20110106
000894769 9801_ $$aFullTexts