Journal Article FZJ-2021-03383

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mitrofanovite Pt 3 Te 4 : A Topological Metal with Termination-Dependent Surface Band Structure and Strong Spin Polarization

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
Soc. Washington, DC

ACS nano 15(9), 14786–14793 () [10.1021/acsnano.1c04766]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Due to their peculiar quasiparticle excitations, topological metals have high potential for applications in the fields of spintronics, catalysis, and superconductivity. Here, by combining spin- and angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory, we discover surface-termination-dependent topological electronic states in the recently discovered mitrofanovite Pt3Te4. Mitrofanovite crystal is formed by alternating, van der Waals bound layers of Pt2Te2 and PtTe2. Our results demonstrate that mitrofanovite is a topological metal with termination-dependent (i) electronic band structure and (ii) spin texture. Despite their distinct electronic character, both surface terminations are characterized by electronic states exhibiting strong spin polarization with a node at the Γ point and sign reversal across the Γ point, indicating their topological nature and the possibility of realizing two distinct electronic configurations (both of them with topological features) on the surface of the same material.

Classification:

Contributing Institute(s):
  1. Quantum Nanoscience (PGI-3)
Research Program(s):
  1. 5213 - Quantum Nanoscience (POF4-521) (POF4-521)
  2. DFG project 396769409 - Grundlagen der Photoemissionstomographie (396769409)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 10 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-3
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-09-02, last modified 2023-08-15


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)