000894913 001__ 894913
000894913 005__ 20250701125923.0
000894913 037__ $$aFZJ-2021-03475
000894913 1001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b0$$ufzj
000894913 1112_ $$aMaterials Week 2021$$cOnline$$d2021-09-07 - 2021-09-09$$wGermany
000894913 245__ $$aSolid oxide cells – Materials status and their operational behavior
000894913 260__ $$c2021
000894913 3367_ $$033$$2EndNote$$aConference Paper
000894913 3367_ $$2DataCite$$aOther
000894913 3367_ $$2BibTeX$$aINPROCEEDINGS
000894913 3367_ $$2DRIVER$$aconferenceObject
000894913 3367_ $$2ORCID$$aLECTURE_SPEECH
000894913 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1631772492_12854$$xInvited
000894913 520__ $$aSolid oxide fuel and electrolyzer cells (SOCs) are one technology to enable a carbon-free future with respect to the generation of electricity (SOFC) or the use of renewable electricity for the production of hydrogen (H2) or synthetic gases (H2 + CO) (SOEC). SOC is the only technology which is able to perform this in ONE system, e.g. the whole system, composed of the stack and the necessary periphery (“balance-of-plant”), can be operated in both modes, called rSOC “reversible solid oxide cell”.While in fuel cell mode electrical efficiencies reach approx. 60% (including thermal: > 80%), in electrolysis mode the “basic” efficiency is around 65% and, if waste heat and water vapor are existing, the percentage reaches values above 90%.Actual SOC stacks and systems have proven their long-term availability by operational times of nearly 100,000 h (SOFC stack), ~ 40,000 h (SOFC system) and approx. 20,000 h (SOEC stack). During operation, stacks and systems loose performance to a certain extent. Typical degradation rates are ~ 0.5 % / 1,000 h in fuel cell and around 1 % / 1,000 h in electrolysis mode. Both operational modes show partly different degradation effects.The presentation gives an overview on the current materials used in solid oxide fuel and electrolyzer stacks (e.g. cells, contacting, sealants and interconnects) and highlights their operational behavior in fuel cell and electrolysis mode and the main materials-related degradation phenomena based on stack test results.
000894913 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000894913 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000894913 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x2
000894913 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b1$$ufzj
000894913 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b2$$ufzj
000894913 7001_ $$0P:(DE-Juel1)129766$$aNaumenko, Dmitry$$b3$$ufzj
000894913 7001_ $$0P:(DE-Juel1)129819$$aZurek, Joanna$$b4$$ufzj
000894913 7001_ $$0P:(DE-Juel1)157695$$aMargaritis, Nikolaos$$b5$$ufzj
000894913 7001_ $$0P:(DE-Juel1)133667$$aGross-Barsnick, Sonja-Michaela$$b6$$ufzj
000894913 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L.G.J.$$b7$$ufzj
000894913 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b8$$ufzj
000894913 909CO $$ooai:juser.fz-juelich.de:894913$$pVDB
000894913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b0$$kFZJ
000894913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b1$$kFZJ
000894913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b2$$kFZJ
000894913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129766$$aForschungszentrum Jülich$$b3$$kFZJ
000894913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129819$$aForschungszentrum Jülich$$b4$$kFZJ
000894913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157695$$aForschungszentrum Jülich$$b5$$kFZJ
000894913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133667$$aForschungszentrum Jülich$$b6$$kFZJ
000894913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b7$$kFZJ
000894913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich$$b8$$kFZJ
000894913 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000894913 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
000894913 9141_ $$y2021
000894913 920__ $$lyes
000894913 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000894913 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000894913 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x2
000894913 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x3
000894913 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x4
000894913 980__ $$aconf
000894913 980__ $$aVDB
000894913 980__ $$aI:(DE-Juel1)IEK-1-20101013
000894913 980__ $$aI:(DE-Juel1)IEK-2-20101013
000894913 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000894913 980__ $$aI:(DE-Juel1)IEK-9-20110218
000894913 980__ $$aI:(DE-Juel1)IEK-14-20191129
000894913 980__ $$aUNRESTRICTED
000894913 981__ $$aI:(DE-Juel1)ITE-20250108
000894913 981__ $$aI:(DE-Juel1)IMD-1-20101013
000894913 981__ $$aI:(DE-Juel1)IET-1-20110218
000894913 981__ $$aI:(DE-Juel1)IET-4-20191129
000894913 981__ $$aI:(DE-Juel1)IMD-2-20101013