000894925 001__ 894925 000894925 005__ 20240610120556.0 000894925 0247_ $$2doi$$a10.1038/s41467-021-25389-7 000894925 0247_ $$2Handle$$a2128/28627 000894925 0247_ $$2altmetric$$aaltmetric:113052051 000894925 0247_ $$2pmid$$a34493719 000894925 0247_ $$2WOS$$aWOS:000694655700016 000894925 037__ $$aFZJ-2021-03484 000894925 082__ $$a500 000894925 1001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b0$$eCorresponding author$$ufzj 000894925 245__ $$aMagnetic skyrmion braids 000894925 260__ $$a[London]$$bNature Publishing Group UK$$c2021 000894925 3367_ $$2DRIVER$$aarticle 000894925 3367_ $$2DataCite$$aOutput Types/Journal article 000894925 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639126291_30403 000894925 3367_ $$2BibTeX$$aARTICLE 000894925 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000894925 3367_ $$00$$2EndNote$$aJournal Article 000894925 520__ $$aSkyrmions are vortex-like spin textures that form strings in magnetic crystals. Due to the analogy to elastic strings, skyrmion strings are naturally expected to braid and form complex three-dimensional patterns, but this phenomenon has not been explored yet. We found that skyrmion strings can form braids in cubic crystals of chiral magnets. This finding is confirmed by direct observations of skyrmion braids in B20-type FeGe using transmission electron microscopy. The theoretical analysis predicts that the discovered phenomenon is general for a wide family of chiral magnets. These findings have important implications for skyrmionics and propose a solid-state framework for applications of the mathematical theory of braids. 000894925 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0 000894925 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x1 000894925 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x2 000894925 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x3 000894925 536__ $$0G:(EU-Grant)766970$$aQ-SORT - QUANTUM SORTER (766970)$$c766970$$fH2020-FETOPEN-1-2016-2017$$x4 000894925 536__ $$0G:(DE-Juel-1)Z1422.01.18$$aDARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)$$cZ1422.01.18$$x5 000894925 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000894925 7001_ $$0P:(DE-HGF)0$$aRybakov, Filipp N.$$b1$$eCorresponding author 000894925 7001_ $$0P:(DE-Juel1)145390$$aKiselev, Nikolai$$b2$$eCorresponding author$$ufzj 000894925 7001_ $$0P:(DE-Juel1)176812$$aSong, Dongsheng$$b3$$ufzj 000894925 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b4$$ufzj 000894925 7001_ $$00000-0003-4263-5023$$aDu, Haifeng$$b5 000894925 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b6 000894925 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b7$$ufzj 000894925 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-021-25389-7$$gVol. 12, no. 1, p. 5316$$n1$$p5316$$tNature Communications$$v12$$x2041-1723$$y2021 000894925 8564_ $$uhttps://juser.fz-juelich.de/record/894925/files/s41467-021-25389-7.pdf$$yOpenAccess 000894925 8767_ $$8SN-2021-00708-b$$92021-12-02$$d2021-12-07$$eAPC$$jDEAL$$lDEAL: Springer$$zBelegnr.: 1200174041 000894925 909CO $$ooai:juser.fz-juelich.de:894925$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000894925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b0$$kFZJ 000894925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145390$$aForschungszentrum Jülich$$b2$$kFZJ 000894925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176812$$aForschungszentrum Jülich$$b3$$kFZJ 000894925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b4$$kFZJ 000894925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b6$$kFZJ 000894925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ 000894925 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 000894925 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1 000894925 9141_ $$y2021 000894925 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2019$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000894925 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02 000894925 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000894925 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2019$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000894925 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02 000894925 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0 000894925 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1 000894925 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000894925 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3 000894925 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x4 000894925 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x5 000894925 9801_ $$aAPC 000894925 9801_ $$aFullTexts 000894925 980__ $$ajournal 000894925 980__ $$aVDB 000894925 980__ $$aI:(DE-Juel1)IAS-1-20090406 000894925 980__ $$aI:(DE-Juel1)PGI-1-20110106 000894925 980__ $$aI:(DE-82)080009_20140620 000894925 980__ $$aI:(DE-82)080012_20140620 000894925 980__ $$aI:(DE-Juel1)PGI-5-20110106 000894925 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000894925 980__ $$aAPC 000894925 980__ $$aUNRESTRICTED 000894925 981__ $$aI:(DE-Juel1)ER-C-1-20170209