001     896739
005     20211018113108.0
024 7 _ |a 10.3389/fonc.2021.554205
|2 doi
024 7 _ |a 2128/28676
|2 Handle
024 7 _ |a altmetric:113829670
|2 altmetric
024 7 _ |a 34621664
|2 pmid
024 7 _ |a WOS:000703466200001
|2 WOS
037 _ _ |a FZJ-2021-03564
082 _ _ |a 610
100 1 _ |a Loução, Ricardo
|0 P:(DE-Juel1)169114
|b 0
245 _ _ |a A Fast Protocol for Multiparametric Characterisation of Diffusion in the Brain and Brain Tumours
260 _ _ |a Lausanne
|c 2021
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1632224929_6408
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Multi-parametric tissue characterisation is demonstrated using a 4-minute protocol based on diffusion trace acquisitions. Three diffusion regimes are covered simultaneously: pseudo-perfusion, Gaussian, and non-Gaussian diffusion. The clinical utility of this method for fast multi-parametric mapping for brain tumours is explored. A cohort of 17 brain tumour patients was measured on a 3T hybrid MR-PET scanner with a standard clinical MRI protocol, to which the proposed multi-parametric diffusion protocol was subsequently added. For comparison purposes, standard perfusion and a full diffusion kurtosis protocol were acquired. Simultaneous amino-acid (18F-FET) PET enabled the identification of active tumour tissue. The metrics derived from the proposed protocol included perfusion fraction, pseudo-diffusivity, apparent diffusivity, and apparent kurtosis. These metrics were compared to the corresponding metrics from the dedicated acquisitions: cerebral blood volume and flow, mean diffusivity and mean kurtosis. Simulations were carried out to assess the influence of fitting methods and noise levels on the estimation of the parameters. The diffusion and kurtosis metrics obtained from the proposed protocol show strong to very strong correlations with those derived from the conventional protocol. However, a bias towards lower values was observed. The pseudo-perfusion parameters showed very weak to weak correlations compared to their perfusion counterparts. In conclusion, we introduce a clinically applicable protocol for measuring multiple parameters and demonstrate its relevance to pathological tissue characterisation.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Oros-Peusquens, Ana-Maria
|0 P:(DE-Juel1)131782
|b 1
|e Corresponding author
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 2
700 1 _ |a Ferreira, Hugo Alexandre
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Shah, N. Jon
|0 P:(DE-Juel1)131794
|b 4
773 _ _ |a 10.3389/fonc.2021.554205
|g Vol. 11, p. 554205
|0 PERI:(DE-600)2649216-7
|p 554205
|t Frontiers in oncology
|v 11
|y 2021
|x 2234-943X
856 4 _ |u https://juser.fz-juelich.de/record/896739/files/fonc-11-554205.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:896739
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169114
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131782
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT ONCOL : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21