Journal Article FZJ-2021-03564

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A Fast Protocol for Multiparametric Characterisation of Diffusion in the Brain and Brain Tumours

 ;  ;  ;  ;

2021
Frontiers Media Lausanne

Frontiers in oncology 11, 554205 () [10.3389/fonc.2021.554205]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Multi-parametric tissue characterisation is demonstrated using a 4-minute protocol based on diffusion trace acquisitions. Three diffusion regimes are covered simultaneously: pseudo-perfusion, Gaussian, and non-Gaussian diffusion. The clinical utility of this method for fast multi-parametric mapping for brain tumours is explored. A cohort of 17 brain tumour patients was measured on a 3T hybrid MR-PET scanner with a standard clinical MRI protocol, to which the proposed multi-parametric diffusion protocol was subsequently added. For comparison purposes, standard perfusion and a full diffusion kurtosis protocol were acquired. Simultaneous amino-acid (18F-FET) PET enabled the identification of active tumour tissue. The metrics derived from the proposed protocol included perfusion fraction, pseudo-diffusivity, apparent diffusivity, and apparent kurtosis. These metrics were compared to the corresponding metrics from the dedicated acquisitions: cerebral blood volume and flow, mean diffusivity and mean kurtosis. Simulations were carried out to assess the influence of fitting methods and noise levels on the estimation of the parameters. The diffusion and kurtosis metrics obtained from the proposed protocol show strong to very strong correlations with those derived from the conventional protocol. However, a bias towards lower values was observed. The pseudo-perfusion parameters showed very weak to weak correlations compared to their perfusion counterparts. In conclusion, we introduce a clinically applicable protocol for measuring multiple parameters and demonstrate its relevance to pathological tissue characterisation.

Classification:

Contributing Institute(s):
  1. Physik der Medizinischen Bildgebung (INM-4)
  2. Jara-Institut Quantum Information (INM-11)
  3. Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA-BRAIN)
Research Program(s):
  1. 5253 - Neuroimaging (POF4-525) (POF4-525)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-11
Institute Collections > INM > INM-4
Workflow collections > Public records
Publications database
Open Access

 Record created 2021-09-21, last modified 2021-10-18


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)