000897222 001__ 897222
000897222 005__ 20240507205536.0
000897222 0247_ $$2doi$$a10.1016/j.neuron.2021.08.024
000897222 0247_ $$2Handle$$a2128/28883
000897222 0247_ $$2altmetric$$aaltmetric:113626396
000897222 0247_ $$2pmid$$apmid:34536352
000897222 0247_ $$2WOS$$aWOS:000717490100003
000897222 037__ $$aFZJ-2021-03684
000897222 082__ $$a610
000897222 1001_ $$0P:(DE-HGF)0$$aFroudist-Walsh, S.$$b0
000897222 245__ $$aA dopamine gradient controls access to distributed working memory in large-scale monkey cortex
000897222 260__ $$aNew York, NY$$bElsevier$$c2021
000897222 3367_ $$2DRIVER$$aarticle
000897222 3367_ $$2DataCite$$aOutput Types/Journal article
000897222 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715083868_1367
000897222 3367_ $$2BibTeX$$aARTICLE
000897222 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000897222 3367_ $$00$$2EndNote$$aJournal Article
000897222 520__ $$aDopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.
000897222 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000897222 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000897222 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000897222 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000897222 7001_ $$0P:(DE-HGF)0$$aBlliss, D. P.$$b1
000897222 7001_ $$0P:(DE-HGF)0$$aDing, X.$$b2
000897222 7001_ $$0P:(DE-Juel1)176736$$aJankovic-Rapan, Lucija$$b3
000897222 7001_ $$0P:(DE-Juel1)171512$$aNiu, Meiqi$$b4
000897222 7001_ $$0P:(DE-HGF)0$$aKnoblauch, K.$$b5
000897222 7001_ $$0P:(DE-Juel1)131714$$aZilles, Karl$$b6
000897222 7001_ $$0P:(DE-HGF)0$$aKennedy, H.$$b7
000897222 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b8
000897222 7001_ $$0P:(DE-HGF)0$$aWang, X.-J.$$b9$$eCorresponding author
000897222 773__ $$0PERI:(DE-600)2001944-0$$a10.1016/j.neuron.2021.08.024$$gVol. 109, no. 21, p. 3500 - 3520.e13$$n21$$p3500-3520.e13$$tNeuron$$v109$$x0896-6273$$y2021
000897222 8564_ $$uhttps://juser.fz-juelich.de/record/897222/files/1-s2.0-S0896627321006218-main.pdf$$yOpenAccess
000897222 909CO $$ooai:juser.fz-juelich.de:897222$$pVDB$$pdriver$$popen_access$$pdnbdelivery$$pec_fundedresources$$popenaire
000897222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176736$$aForschungszentrum Jülich$$b3$$kFZJ
000897222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171512$$aForschungszentrum Jülich$$b4$$kFZJ
000897222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich$$b8$$kFZJ
000897222 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000897222 9141_ $$y2021
000897222 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000897222 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000897222 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-28$$wger
000897222 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURON : 2022$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
000897222 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURON : 2022$$d2023-08-28
000897222 920__ $$lyes
000897222 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000897222 980__ $$ajournal
000897222 980__ $$aVDB
000897222 980__ $$aI:(DE-Juel1)INM-1-20090406
000897222 980__ $$aUNRESTRICTED
000897222 9801_ $$aFullTexts