001     897253
005     20250129092434.0
024 7 _ |a 10.1002/batt.202100116
|2 doi
024 7 _ |a 2128/29492
|2 Handle
024 7 _ |a altmetric:110091509
|2 altmetric
024 7 _ |a WOS:000681759200001
|2 WOS
037 _ _ |a FZJ-2021-03715
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Montiel Guerrero, Saul Said
|0 P:(DE-Juel1)174488
|b 0
245 _ _ |a Improved Electrochemical Performance of Zinc Anodes by EDTA in Near‐Neutral Zinc−Air Batteries
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643361374_23053
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The influence of ethylenediaminetetraacetic acid (EDTA) electrolyte additive on the performance of Zn−air batteries with near-neutral chloride-based electrolytes was examined for primary and secondary batteries. The electrochemical measurements indicated that Zn is not completely active in neat 2 M NaCl, but still could be discharged up to 1 mA cm−2 around −1.0 VAg/AgCl. The characterization of the Zn surfaces revealed the existence of a passive film consisting of Simonkolleite, Zn(OH)2, and/or ZnO. The EDTA additive enhanced the discharge voltages by 200 mV to −1.2 VAg/AgCl indicating an active Zn surface. The effect of EDTA is explained by its chelation abilities with Zn2+ before formation of hydroxide or oxide species. The Zn−air cells with EDTA were operated up to 930 h with specific energies up to 840 Wh kgZn−1. The cells could also be cycled up to 70 cycles while providing enhanced discharge voltages at 1.15 V over 50 cycles. The positive effect of EDTA is dependent on the amount of free EDTA molecules. Nevertheless, the Zn−air cells showed better performance in terms of higher discharge voltage, discharge energies, and lower overpotentials in presence of EDTA.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Durmus, Yasin Emre
|0 P:(DE-Juel1)162243
|b 1
|e Corresponding author
700 1 _ |a Dzieciol, Krzysztof
|0 P:(DE-Juel1)164430
|b 2
|u fzj
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 3
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 4
700 1 _ |a Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 5
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 6
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 7
773 _ _ |a 10.1002/batt.202100116
|g p. batt.202100116
|0 PERI:(DE-600)2897248-X
|n 12
|p 1830-1842
|t Batteries & supercaps
|v 4
|y 2021
|x 2566-6223
856 4 _ |u https://juser.fz-juelich.de/record/897253/files/Invoice_5613136.pdf
856 4 _ |u https://juser.fz-juelich.de/record/897253/files/batt.202100116.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:897253
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174488
910 1 _ |a University of Duisburg-Essen
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)174488
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162243
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164430
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)142562
910 1 _ |a University of Duisburg-Essen
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)142562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-32
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-32
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21