000902170 001__ 902170
000902170 005__ 20240529111456.0
000902170 037__ $$aFZJ-2021-04079
000902170 041__ $$aEnglish
000902170 1001_ $$0P:(DE-Juel1)145694$$aFriese, Karen$$b0$$eCorresponding author
000902170 1112_ $$aLENS webinar: The role of neutron science in securing a sustainable future$$conline event$$d2021-11-03 - 2021-11-03$$wonline event
000902170 245__ $$aCaloric materials for energy-efficient cooling
000902170 260__ $$c2021
000902170 3367_ $$033$$2EndNote$$aConference Paper
000902170 3367_ $$2DataCite$$aOther
000902170 3367_ $$2BibTeX$$aINPROCEEDINGS
000902170 3367_ $$2DRIVER$$aconferenceObject
000902170 3367_ $$2ORCID$$aLECTURE_SPEECH
000902170 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1635865688_16145$$xInvited
000902170 520__ $$aDomestic and industrial refrigeration applications contribute a substantial part to mankinds energy consumption. New technologies based on solid state caloric effects, such as magnetocaloric, barocaloric, elastocaloric and electrocaloric effect, promise considerable efficiency gains as compared to today’s vapor compression technology. Within our research we aim for a better understanding of the relation between the material structure and dynamics to guide a sustainable material design.In caloric materials, applied fields (e.g. magnetic, electric, pressure, strain) lead to changes in entropy and in the adiabatic temperature. The observed caloric effects form the basis of the caloric refrigeration cycles. We are interested in the fundamental mechanisms of these caloric effects, which are not yet fully understood. In particular, we studied the magnetocaloric effect in the family of compounds Mn5-xFexSi3.Neutron scattering experiments were crucial for the elucidation of the magnetic and crystalline structures and for the distinction of Mn and Fe [1]. In addition, inelastic neutron scattering investigations revealed that the application of a magnetic field induces (suppresses) fluctuations in the materials. These fluctuations are closely related to the inverse (direct) magnetocaloric effect observed in these compounds [2].[1] N. Maraytta et al., J. Appl. Phys. 128, 103903, 2020 ; A. Eich et al., Mater. Res. Express 6, 096118, 2019; P. Hering, et al.,Chem. Mater. 27, 7128, 2015[2] N. Biniskos, et al., Phys Rev B. 96, 104407, 2017; Biniskos et. al. Phys. Rev. Letters 120, 257205, 2018.
000902170 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000902170 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000902170 909CO $$ooai:juser.fz-juelich.de:902170$$pVDB
000902170 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145694$$aForschungszentrum Jülich$$b0$$kFZJ
000902170 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000902170 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000902170 9141_ $$y2021
000902170 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000902170 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000902170 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000902170 980__ $$aconf
000902170 980__ $$aVDB
000902170 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000902170 980__ $$aI:(DE-Juel1)PGI-4-20110106
000902170 980__ $$aI:(DE-82)080009_20140620
000902170 980__ $$aUNRESTRICTED
000902170 981__ $$aI:(DE-Juel1)JCNS-2-20110106