001 | 902400 | ||
005 | 20230123101900.0 | ||
024 | 7 | _ | |a 10.1021/acssuschemeng.1c05865 |2 doi |
024 | 7 | _ | |a 2128/31270 |2 Handle |
024 | 7 | _ | |a altmetric:120473652 |2 altmetric |
024 | 7 | _ | |a WOS:000753972100008 |2 WOS |
037 | _ | _ | |a FZJ-2021-04232 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Tharmasothirajan, Apilaasha |0 P:(DE-Juel1)176612 |b 0 |
245 | _ | _ | |a Microbial Polyphenol Production in a Biphasic Process |
260 | _ | _ | |a Washington, DC |c 2021 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1654777445_23928 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Microbial synthesis of aromatic compounds is generally limited by inherent product toxicity toward the producing cells. Here, in situ extractive strategies represent an efficient approach to avoid such toxic effects and to increase the overall process performance. We conducted a solvent screening to identify suitable organic solvents to develop a biphasic extractive strategy for microbial plant polyphenol production using Corynebacterium glutamicum. From 10 pre-selected organic solvents, tributyrin (TB) showed the best biocompatibility and was chosen for the biphasic extraction process due to its beneficial effect on partitioning and solubility of the plant polyphenol resveratrol. In bioreactors, biphasic cultivation with TB allowed for a product titer of 7.5 mM (1.71 g L–1) resveratrol with a volumetric productivity of 0.26 mM h–1 and a product yield of 0.92 mol mol–1. This biphasic cultivation procedure can be directly employed for the synthesis of other aromatics with similar properties using C. glutamicum. |
536 | _ | _ | |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) |0 G:(DE-HGF)POF4-2172 |c POF4-217 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Wellfonder, M. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Marienhagen, Jan |0 P:(DE-Juel1)144031 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1021/acssuschemeng.1c05865 |0 PERI:(DE-600)2695697-4 |n 51 |p 17266-17275 |t ACS sustainable chemistry & engineering |v 9 |y 2021 |x 2168-0485 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/902400/files/Invoice%20sc-2021-058658.pdf |
856 | 4 | _ | |y OpenAccess |z StatID:(DE-HGF)0510 |u https://juser.fz-juelich.de/record/902400/files/Tharmasothirajan_Marienhagen.pdf |
856 | 4 | _ | |y Restricted |z StatID:(DE-HGF)0599 |u https://juser.fz-juelich.de/record/902400/files/acssuschemeng.1c05865.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:902400 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176612 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144031 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2172 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-02-04 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS SUSTAIN CHEM ENG : 2019 |d 2021-02-04 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS SUSTAIN CHEM ENG : 2019 |d 2021-02-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|