000902572 001__ 902572
000902572 005__ 20240712100904.0
000902572 0247_ $$2doi$$a10.1029/2021JD035343
000902572 0247_ $$2ISSN$$a0148-0227
000902572 0247_ $$2ISSN$$a2156-2202
000902572 0247_ $$2ISSN$$a2169-897X
000902572 0247_ $$2ISSN$$a2169-8996
000902572 0247_ $$2Handle$$a2128/29353
000902572 0247_ $$2altmetric$$aaltmetric:117390816
000902572 0247_ $$2WOS$$aWOS:000729996000026
000902572 037__ $$aFZJ-2021-04371
000902572 082__ $$a550
000902572 1001_ $$00000-0003-3412-4952$$aSwenson, G. R.$$b0$$eCorresponding author
000902572 245__ $$aIntra‐annual Variation of Eddy Diffusion (k zz ) in the MLT, from SABER and SCIAMACHY Atomic Oxygen Climatologies
000902572 260__ $$aHoboken, NJ$$bWiley$$c2021
000902572 3367_ $$2DRIVER$$aarticle
000902572 3367_ $$2DataCite$$aOutput Types/Journal article
000902572 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638855367_11998
000902572 3367_ $$2BibTeX$$aARTICLE
000902572 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902572 3367_ $$00$$2EndNote$$aJournal Article
000902572 520__ $$aAtomic oxygen (O) in the mesosphere and lower thermosphere (MLT) results from a balance between production via photo-dissociation in the lower thermosphere and chemical loss by recombination in the upper mesosphere. The transport of O downward from the lower thermosphere into the mesosphere is preferentially driven by the eddy diffusion process that results from dissipating gravity waves and instabilities. The motivation here is to probe the intra-annual variability of the eddy diffusion coefficient (kzz) and eddy velocity in the MLT based on the climatology of the region, initially accomplished by Garcia and Solomon (1985, https://doi.org/10.1029/JD090iD02p03850). In the current study, the intra-annual cycle was divided into 26 two-week periods for each of three zones: the northern hemisphere (NH), southern hemisphere (SH), and equatorial (EQ). Both 16 years of SABER (2002–2018) and 10 years of SCIAMACHY (2002–2012) O density measurements, along with NRLMSIS® 2.0 were used for calculation of atomic oxygen eddy diffusion velocities and fluxes. Our prominent findings include a dominant annual oscillation below 87 km in the NH and SH zones, with a factor of 3–4 variation between winter and summer at 83 km, and a dominant semiannual oscillation at all altitudes in the EQ zone. The measured global average kzz at 96 km lacks the intra-annual variability of upper atmosphere density data deduced by Qian et al. (2009, https://doi.org/10.1029/2008JA013643). The very large seasonal (and hemispherical) variations in kzz and O densities are important to separate and isolate in satellite analysis and to incorporate in MLT models.
000902572 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000902572 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902572 7001_ $$00000-0002-2355-8053$$aVargas, F.$$b1
000902572 7001_ $$00000-0002-0569-0093$$aJones, M.$$b2
000902572 7001_ $$0P:(DE-Juel1)180346$$aZhu, Yu$$b3
000902572 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, M.$$b4
000902572 7001_ $$0P:(DE-HGF)0$$aYee, J. H.$$b5
000902572 7001_ $$0P:(DE-HGF)0$$aMlynczak, M.$$b6
000902572 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2021JD035343$$n23$$pe2021JD035343$$tJournal of geophysical research / D$$v126$$x0148-0227$$y2021
000902572 8564_ $$uhttps://juser.fz-juelich.de/record/902572/files/2021JD035343-1.pdf$$yOpenAccess
000902572 909CO $$ooai:juser.fz-juelich.de:902572$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129128$$aForschungszentrum Jülich$$b4$$kFZJ
000902572 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000902572 9141_ $$y2021
000902572 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000902572 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000902572 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000902572 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-ATMOS : 2019$$d2021-01-30
000902572 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000902572 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000902572 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000902572 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902572 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000902572 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000902572 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000902572 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000902572 920__ $$lyes
000902572 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000902572 9801_ $$aFullTexts
000902572 980__ $$ajournal
000902572 980__ $$aVDB
000902572 980__ $$aUNRESTRICTED
000902572 980__ $$aI:(DE-Juel1)IEK-7-20101013
000902572 981__ $$aI:(DE-Juel1)ICE-4-20101013