Journal Article FZJ-2021-04371

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Intra‐annual Variation of Eddy Diffusion (k zz ) in the MLT, from SABER and SCIAMACHY Atomic Oxygen Climatologies

 ;  ;  ;  ;  ;  ;

2021
Wiley Hoboken, NJ

Journal of geophysical research / D 126(23), e2021JD035343 () [10.1029/2021JD035343]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Atomic oxygen (O) in the mesosphere and lower thermosphere (MLT) results from a balance between production via photo-dissociation in the lower thermosphere and chemical loss by recombination in the upper mesosphere. The transport of O downward from the lower thermosphere into the mesosphere is preferentially driven by the eddy diffusion process that results from dissipating gravity waves and instabilities. The motivation here is to probe the intra-annual variability of the eddy diffusion coefficient (kzz) and eddy velocity in the MLT based on the climatology of the region, initially accomplished by Garcia and Solomon (1985, https://doi.org/10.1029/JD090iD02p03850). In the current study, the intra-annual cycle was divided into 26 two-week periods for each of three zones: the northern hemisphere (NH), southern hemisphere (SH), and equatorial (EQ). Both 16 years of SABER (2002–2018) and 10 years of SCIAMACHY (2002–2012) O density measurements, along with NRLMSIS® 2.0 were used for calculation of atomic oxygen eddy diffusion velocities and fluxes. Our prominent findings include a dominant annual oscillation below 87 km in the NH and SH zones, with a factor of 3–4 variation between winter and summer at 83 km, and a dominant semiannual oscillation at all altitudes in the EQ zone. The measured global average kzz at 96 km lacks the intra-annual variability of upper atmosphere density data deduced by Qian et al. (2009, https://doi.org/10.1029/2008JA013643). The very large seasonal (and hemispherical) variations in kzz and O densities are important to separate and isolate in satellite analysis and to incorporate in MLT models.

Classification:

Contributing Institute(s):
  1. Stratosphäre (IEK-7)
Research Program(s):
  1. 2112 - Climate Feedbacks (POF4-211) (POF4-211)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-4
Workflow collections > Public records
IEK > IEK-7
Publications database
Open Access

 Record created 2021-11-19, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)