000902579 001__ 902579
000902579 005__ 20220131120355.0
000902579 0247_ $$2doi$$a10.1103/PhysRevResearch.2.043150
000902579 0247_ $$2Handle$$a2128/29070
000902579 0247_ $$2altmetric$$aaltmetric:93322448
000902579 0247_ $$2WOS$$aWOS:000605400600007
000902579 037__ $$aFZJ-2021-04378
000902579 082__ $$a530
000902579 1001_ $$0P:(DE-Juel1)136887$$aGrassberger, Peter$$b0$$eCorresponding author
000902579 245__ $$aMorphological transitions in supercritical generalized percolation and moving interfaces in media with frozen randomness
000902579 260__ $$aCollege Park, MD$$bAPS$$c2020
000902579 3367_ $$2DRIVER$$aarticle
000902579 3367_ $$2DataCite$$aOutput Types/Journal article
000902579 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637567245_703
000902579 3367_ $$2BibTeX$$aARTICLE
000902579 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000902579 3367_ $$00$$2EndNote$$aJournal Article
000902579 520__ $$aWe consider the growth of clusters in disordered media at zero temperature, as exemplified by supercritical generalized percolation and by the T=0 random field Ising model. We show that the morphology of such clusters and of their surfaces can be of different types: They can be standard compact clusters with rough or smooth surfaces, but there exists also a completely different “spongy” phase. Clusters in the spongy phase are compact as far as the size-mass relation M∼RD is concerned (with D being the space dimension) but have an outer surface (or “hull”) whose fractal dimension is also D and which is indeed dense in the interior of the entire cluster. This behavior is found in all dimensions D≥3. Slightly supercritical clusters can be of either type in D=3, while they are always spongy in D≥4. Possible consequences for the applicability of Kardar-Parisi-Zhang (KPZ) scaling to interfaces in media with frozen pinning centers are studied in detail. In particular, we find—in contrast to KPZ—a weak-coupling phase in 2+1 dimensions.
000902579 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000902579 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000902579 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.043150$$gVol. 2, no. 4, p. 043150$$n4$$p043150$$tPhysical review research$$v2$$x2643-1564$$y2020
000902579 8564_ $$uhttps://juser.fz-juelich.de/record/902579/files/PhysRevResearch.2.043150.pdf$$yOpenAccess
000902579 909CO $$ooai:juser.fz-juelich.de:902579$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000902579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136887$$aForschungszentrum Jülich$$b0$$kFZJ
000902579 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000902579 9141_ $$y2021
000902579 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000902579 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000902579 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000902579 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000902579 9801_ $$aFullTexts
000902579 980__ $$ajournal
000902579 980__ $$aVDB
000902579 980__ $$aUNRESTRICTED
000902579 980__ $$aI:(DE-Juel1)JSC-20090406